Large-eddy simulation of a turbulent forced plume

被引:79
|
作者
Zhou, X [1 ]
Luo, KH [1 ]
Williams, JJR [1 ]
机构
[1] Queen Mary Univ London, Dept Engn, London E1 4NS, England
基金
英国工程与自然科学研究理事会;
关键词
LES; buoyancy; turbulent plume;
D O I
10.1016/S0997-7546(00)01117-1
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This paper reports on an application of large-eddy simulation (LES) to a spatially-developing round turbulent buoyant jet. The numerical method used is based on a low-Mach-number version of the governing equations for compressible flow which can account for density variations. The second-order centre-difference scheme is used for spatial discretization and an Adams-Bashforth scheme for temporal discretization. Comparisons are made between LES results, experimental measurements and plume theory for the forced plume under moderate Reynolds number and good agreement has been achieved. It is found that the plume spreading and the centerline maximum mean velocity strongly depend on the forcing conditions imposed on the inflow plane. The helical mode of instability leads to a larger spreading rate as compared to an axisymmetric mode. The enhanced entrainment is directly related to the strong turbulent momentum and energy transports between the plume and surrounding fluid induced by vortex dynamics. The entrainment ratio is about 0.09 and falls into the range of experimentally determined values. Budgets of the mean momentum and energy equations are analyzed. It is found that the radial turbulent transport nearly balances the streamwise convection and the buoyancy force in the axial momentum equation. Also, the radial turbulent stress is balanced by the streamwise convection in the energy equation. The energy-spectrum for the axial velocity fluctuations shows a -5/3 power law of the Kolmogorov decay, while the power spectrum for the temperature fluctuations shows both -5/3 and -3 power laws in the inertial-convective and inertial-diffusive ranges, respectively. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:233 / 254
页数:22
相关论文
共 50 条
  • [21] Large-eddy simulation of a turbulent boundary layer with blowing
    Guillaume Brillant
    Françoise Bataille
    Frédéric Ducros
    Theoretical and Computational Fluid Dynamics, 2004, 17 : 433 - 443
  • [22] Large-eddy simulation of a turbulent compressible round jet
    DeBonis, JR
    Scott, JN
    AIAA JOURNAL, 2002, 40 (07) : 1346 - 1354
  • [23] Large-eddy simulation of a turbulent reacting liquid flow\
    Michioka, T
    Komori, S
    AICHE JOURNAL, 2004, 50 (11) : 2705 - 2720
  • [24] Large-eddy simulation of a turbulent boundary layer with blowing
    Brillant, G
    Bataille, FO
    Ducros, F
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2004, 17 (5-6) : 433 - 443
  • [25] Accuracy of Large-Eddy Simulation of Premixed Turbulent Combustion
    Vreman, A. W.
    Bastiaans, R. J. M.
    Geurts, B. J.
    QUALITY AND RELIABILITY OF LARGE-EDDY SIMULATIONS, 2008, 12 : 307 - +
  • [26] A LARGE-EDDY SIMULATION SCHEME FOR TURBULENT REACTING FLOWS
    GAO, F
    OBRIEN, EE
    PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1993, 5 (06): : 1282 - 1284
  • [27] Large-eddy simulation of a turbulent hydrogen diffusion flame
    Forkel, H
    Janicka, J
    FLOW TURBULENCE AND COMBUSTION, 2000, 65 (02) : 163 - 175
  • [28] Large-Eddy Simulation of a Turbulent Hydrogen Diffusion Flame
    Hendrik Forkel
    Johannes Janicka
    Flow, Turbulence and Combustion, 2000, 65 : 163 - 175
  • [29] TOWARD THE LARGE-EDDY SIMULATION OF COMPRESSIBLE TURBULENT FLOWS
    ERLEBACHER, G
    HUSSAINI, MY
    SPEZIALE, CG
    ZANG, TA
    JOURNAL OF FLUID MECHANICS, 1992, 238 : 155 - 185
  • [30] Large-eddy simulation of turbulent flow in a street canyon
    Cui, ZQ
    Cai, XM
    Baker, CJ
    QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2004, 130 (599) : 1373 - 1394