On the properties of multiple-valued functions that are symmetric in both variable values and labels

被引:10
|
作者
Butler, JT [1 ]
Sasao, T [1 ]
机构
[1] USN, Postgrad Sch, Dept Elect & Comp Engn, Monterey, CA 93943 USA
关键词
symmetric functions; multiple-valued logic; variable/value symmetric functions; minimization;
D O I
10.1109/ISMVL.1998.679299
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Functions that are symmetric in both variable labels and variable values are useful as benchmarks for logic minimization algorithms. We present the properties of such functions, showing that they are isomorphic to partitions on n (the number of variables) with no part greater than r (the number of logic values). From this, we enumerate these functions. Further we derive lower bounds, upper bounds, and exact values for the number of prime implicants in the minimal sum-of-products expressions for certain subclasses of these functions.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [21] Contribution to the Study of Multiple-valued Bent Functions
    Moraga, Claudio
    Stankovic, Milena
    Stankovic, Radomir S.
    Stojkovic, Suzana
    2013 IEEE 43RD INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2013), 2013, : 340 - 345
  • [22] Finding composition trees for multiple-valued functions
    Dubrova, EV
    Muzio, JC
    vonStengel, B
    27TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC - 1997 PROCEEDINGS, 1997, : 19 - 26
  • [23] Logic expressions of monotonic multiple-valued functions
    Nakashima, K
    Nakamura, Y
    Takagi, N
    1996 26TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1996, : 290 - 295
  • [24] Hyper-bent Multiple-Valued Functions
    Moraga, Claudio
    Stankovic, Milena
    Stankovic, Radomir S.
    Stojkovic, Suzana
    COMPUTER AIDED SYSTEMS THEORY, PT II, 2013, 8112 : 250 - 257
  • [25] DECOMPOSITION OF MULTIPLE-VALUED LOGIC FUNCTIONS.
    Fricke, Juergen
    Proceedings of The International Symposium on Multiple-Valued Logic, 1978, : 208 - 212
  • [26] Edge-valued decision diagrams for multiple-valued functions
    Stankovic, RS
    Astola, J
    34TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 2004, : 229 - 234
  • [27] Boolean Functions with Multiple-Valued Walsh Spectra
    SUN Tianfeng
    HU Bin
    Chinese Journal of Electronics, 2019, 28 (06) : 1165 - 1169
  • [28] MAXIMUM PRINCIPLE FOR MULTIPLE-VALUED ANALYTIC FUNCTIONS
    WIDOM, H
    ACTA MATHEMATICA UPPSALA, 1971, 126 (1-2): : 63 - &
  • [29] Boolean Functions with Multiple-Valued Walsh Spectra
    Sun, Tianfeng
    Hu, Bin
    CHINESE JOURNAL OF ELECTRONICS, 2019, 28 (06) : 1165 - 1169
  • [30] Probabilistic equivalence checking of multiple-valued functions
    Dubrova, E
    Sack, H
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2004, 10 (04) : 395 - 414