On the properties of multiple-valued functions that are symmetric in both variable values and labels

被引:10
|
作者
Butler, JT [1 ]
Sasao, T [1 ]
机构
[1] USN, Postgrad Sch, Dept Elect & Comp Engn, Monterey, CA 93943 USA
关键词
symmetric functions; multiple-valued logic; variable/value symmetric functions; minimization;
D O I
10.1109/ISMVL.1998.679299
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Functions that are symmetric in both variable labels and variable values are useful as benchmarks for logic minimization algorithms. We present the properties of such functions, showing that they are isomorphic to partitions on n (the number of variables) with no part greater than r (the number of logic values). From this, we enumerate these functions. Further we derive lower bounds, upper bounds, and exact values for the number of prime implicants in the minimal sum-of-products expressions for certain subclasses of these functions.
引用
收藏
页码:83 / 88
页数:6
相关论文
共 50 条
  • [1] On the Sensitivity of Boolean and Multiple-Valued Symmetric Functions
    Butler, Jon T.
    Sasao, Tsutomu
    [J]. 2022 IEEE 52ND INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2022), 2022, : 125 - 130
  • [2] Multiple-valued decision diagrams with symmetric variable nodes
    Miller, DM
    Muranaka, N
    [J]. 1996 26TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1996, : 242 - 247
  • [3] Properties of Multiple-Valued Partition Functions
    Butler, Jon T.
    Sasao, Tsutomu
    Nagayama, Shinobu
    [J]. 2020 IEEE 50TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2020), 2020, : 82 - 87
  • [4] Planarity in ROMDD's of multiple-valued symmetric functions
    Butler, JT
    Nowlin, JL
    Sasao, T
    [J]. 1996 26TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC, PROCEEDINGS, 1996, : 236 - 241
  • [5] ON MULTIPLE-VALUED RANDOM FUNCTIONS
    LUMLEY, JL
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (09) : 1198 - &
  • [6] DEFORMATIONS AND MULTIPLE-VALUED FUNCTIONS
    ALMGREN, F
    [J]. PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS, 1986, 44 : 29 - 130
  • [7] METHODS FOR DETECTION OF SOME PROPERTIES OF MULTIPLE-VALUED FUNCTIONS
    STANKOVIC, RS
    MORAGA, C
    [J]. IEE PROCEEDINGS-E COMPUTERS AND DIGITAL TECHNIQUES, 1992, 139 (05): : 421 - 429
  • [8] Functional Decomposition of Symmetric Multiple-Valued Functions and Their Compact Representation in Decision Diagrams
    Nagayama, Shinobu
    Sasao, Tsutomu
    Butler, Jon T.
    [J]. IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2024, E107D (08) : 922 - 929
  • [9] Enumeration of multiple-valued kleenean functions and some related properties
    Hata, Yutaka
    Yuhara, Masaharu
    Miyawaki, Fujio
    Yamato, Kazuharu
    [J]. Systems and Computers in Japan, 1993, 24 (03) : 1 - 11
  • [10] On the Reed-Muller-Fourier Spectrum of Multiple-valued Rotation Symmetric Functions
    Moraga, Claudio
    Stankovic, Radomir S.
    Astola, Jaakko T.
    [J]. 2018 IEEE 48TH INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL 2018), 2018, : 241 - 246