WELL-BALANCED SIMULATION OF GEOPHYSICAL FLOWS VIA THE SHALLOW WATER EQUATIONS WITH BOTTOM TOPOGRAPHY: CONSISTENCY AND NUMERICAL COMPUTATION

被引:0
|
作者
Mueller, Thomas [1 ]
Pfeiffer, Axel [1 ]
机构
[1] Univ Freiburg, Abt Angew Math, Hermann Herder Str 10, D-79104 Freiburg, Germany
关键词
Shallow water equations; finite volume schemes; well-balanced schemes; wetting and drying; finite volume schemes on surfaces; consistency; SCALAR CONSERVATION-LAWS; SCHEME; ORDER;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this contribution we review a well-balancing modification for the shallow water equations and give a new result on its order of consistency, where dry regions are included. Furthermore, we combine the well-balancing modification with an existing wetting and drying approach. We show numerical results including the application to equations posed on surfaces including a realistic bottom topography. For this, we propose a finite volume scheme that is able to deal with a variety of surfaces.
引用
收藏
页码:801 / 808
页数:8
相关论文
共 50 条
  • [21] Well-Balanced Numerical Schemes for Shallow Water Equations with Horizontal Temperature Gradient
    Mai Duc Thanh
    Nguyen Xuan Thanh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (01) : 783 - 807
  • [22] A robust and well-balanced numerical model for solving the two-layer shallow water equations over uneven topography
    Lu, Xinhua
    Dong, Bingjiang
    Mao, Bing
    Zhang, Xiaofeng
    COMPTES RENDUS MECANIQUE, 2015, 343 (7-8): : 429 - 442
  • [23] Well-Balanced Adaptive Mesh Refinement for shallow water flows
    Donat, Rosa
    Carmen Marti, M.
    Martinez-Gavara, Anna
    Mulet, Pep
    JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 257 : 937 - 953
  • [24] A multi well-balanced scheme for the shallow water MHD system with topography
    François Bouchut
    Xavier Lhébrard
    Numerische Mathematik, 2017, 136 : 875 - 905
  • [25] A multi well-balanced scheme for the shallow water MHD system with topography
    Bouchut, Francois
    Lhebrard, Xavier
    NUMERISCHE MATHEMATIK, 2017, 136 (04) : 875 - 905
  • [26] Well-balanced schemes for the shallow water equations with Coriolis forces
    Chertock, Alina
    Dudzinski, Michael
    Kurganov, Alexander
    Lukacova-Medvid'ova, Maria
    NUMERISCHE MATHEMATIK, 2018, 138 (04) : 939 - 973
  • [27] An Energy Conserving Well-balanced Scheme for the Shallow Water Equations
    Reiss, J.
    Touma, R.
    Sesterhenn, J.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [28] Well-balanced methods for the shallow water equations in spherical coordinates
    Castro, Manuel J.
    Ortega, Sergio
    Pares, Carlos
    COMPUTERS & FLUIDS, 2017, 157 : 196 - 207
  • [29] Well-balanced schemes for the shallow water equations with Coriolis forces
    Alina Chertock
    Michael Dudzinski
    Alexander Kurganov
    Mária Lukáčová-Medvid’ová
    Numerische Mathematik, 2018, 138 : 939 - 973