Analytic Normalized Solutions of 2D Fractional Saint-Venant Equations of a Complex Variable

被引:0
|
作者
Alarifi, Najla M. [1 ]
Ibrahim, Rabha W. [2 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Math, Dammam 31113, Saudi Arabia
[2] IEEE 94086547, Kuala Lumpur 59200, Malaysia
关键词
MITTAG-LEFFLER FUNCTION; PRABHAKAR;
D O I
10.1155/2021/4797955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Saint-Venant equations describe the flow below a pressure surface in a fluid. We aim to generalize this class of equations using fractional calculus of a complex variable. We deal with a fractional integral operator type Prabhakar operator in the open unit disk. We formulate the extended operator in a linear convolution operator with a normalized function to study some important geometric behaviors. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions. Moreover, as an application, we determine the upper bound of the generalized fractional 2-dimensional Saint-Venant equations (2D-SVE) of diffusive wave including the difference of bed slope.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Global solutions for 2D quadratic Schrodinger equations
    Germain, P.
    Masmoudi, N.
    Shatah, J.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (05): : 505 - 543
  • [42] Dissipation in turbulent solutions of 2D Euler equations
    Eyink, GL
    NONLINEARITY, 2001, 14 (04) : 787 - 802
  • [43] On the strong solutions of the primitive equations in 2D domains
    Guillén-González, F
    Rodríguez-Bellido, MA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (05) : 621 - 646
  • [44] Numerical solutions to 2D Maxwell–Bloch equations
    Jingyi Xiong
    Max Colice
    Friso Schlottau
    Kelvin Wagner
    Bengt Fornberg
    Optical and Quantum Electronics, 2008, 40 : 447 - 453
  • [45] Growth of solutions for QG and 2D Euler equations
    Cordoba, D
    Fefferman, C
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 15 (03) : 665 - 670
  • [46] Convergence analysis of the anisotropic FEM for 2D time fractional variable coefficient diffusion equations on graded meshes
    Wei, Yabing
    Lu, Shujuan
    Chen, Hu
    Zhao, Yanmin
    Wang, Fenling
    APPLIED MATHEMATICS LETTERS, 2021, 111
  • [47] Global Mild Solutions for a Nonautonomous 2D Navier-Stokes Equations with Impulses at Variable Times
    Bonotto, E. M.
    Mesquita, J. G.
    Silva, R. P.
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2018, 20 (02) : 801 - 818
  • [48] Global solutions of 2D isentropic compressible Navier-Stokes equations with one slow variable
    Lu, Yong
    Zhang, Ping
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 376 : 406 - 468
  • [49] Asymptotic solutions of 2D wave equations with variable velocity and localized right-hand side
    S. Yu. Dobrokhotov
    V. E. Nazaikinskii
    B. Tirozzi
    Russian Journal of Mathematical Physics, 2010, 17 (1) : 66 - 76
  • [50] Global-in-time well-posedness of solutions for the 2D hyperbolic Prandtl equations in an analytic framework
    Dong, Xiaolei
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (03) : 3895 - 3906