Analytic Normalized Solutions of 2D Fractional Saint-Venant Equations of a Complex Variable

被引:0
|
作者
Alarifi, Najla M. [1 ]
Ibrahim, Rabha W. [2 ]
机构
[1] Imam Abdulrahman Bin Faisal Univ, Dept Math, Dammam 31113, Saudi Arabia
[2] IEEE 94086547, Kuala Lumpur 59200, Malaysia
关键词
MITTAG-LEFFLER FUNCTION; PRABHAKAR;
D O I
10.1155/2021/4797955
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Saint-Venant equations describe the flow below a pressure surface in a fluid. We aim to generalize this class of equations using fractional calculus of a complex variable. We deal with a fractional integral operator type Prabhakar operator in the open unit disk. We formulate the extended operator in a linear convolution operator with a normalized function to study some important geometric behaviors. A class of integral inequalities is investigated involving special functions. The upper bound of the suggested operator is computed by using the Fox-Wright function, for a class of convex functions and univalent functions. Moreover, as an application, we determine the upper bound of the generalized fractional 2-dimensional Saint-Venant equations (2D-SVE) of diffusive wave including the difference of bed slope.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] A new form of the Saint-Venant equations for variable topography
    Yu, Cheng-Wei
    Hodges, Ben R.
    Liu, Frank
    HYDROLOGY AND EARTH SYSTEM SCIENCES, 2020, 24 (08) : 4001 - 4024
  • [2] WICFEM - A FORTRAN PROGRAM FOR SOLUTIONS OF SAINT-VENANT STREAMFLOW EQUATIONS
    NWAOGAZIE, IL
    ADVANCES IN ENGINEERING SOFTWARE AND WORKSTATIONS, 1985, 7 (04): : 182 - 198
  • [3] A Generalized Rusanov method for Saint-Venant Equations with Variable Horizontal Density
    Benkhaldoun, Fayssal
    Mohamed, Kamel
    Seaid, Mohammed
    FINITE VOLUMES FOR COMPLEX APPLICATIONS VI: PROBLEMS & PERSPECTIVES, VOLS 1 AND 2, 2011, 4 : 89 - +
  • [4] Analytic solutions of Saint-Venant problem in shear lag effect of T cantilever beam
    Liu, Han-Bing
    Qin, Xu-Xi
    Jiao, Yu-Ling
    He, Feng
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2009, 39 (03): : 691 - 696
  • [5] Linear stability of the 1D Saint-Venant equations and drag parameterizations
    Thual, Olivier
    Plumerault, Louis-Romain
    Astruc, Dominique
    JOURNAL OF HYDRAULIC RESEARCH, 2010, 48 (03) : 348 - 353
  • [6] Graphical solutions of the two-dimensional Saint-Venant equations by means of channels reticles
    Hernandez Jimenez, Rosa Esther
    Munguia, Emmanuel
    Alavez-Ramirez, Justino
    Mora Ortiz, Rene Sebastian
    Ramos Reyes, Rodimiro
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2020, 36 (02): : 1 - 9
  • [7] Front dynamics of a water surge at high Reynolds number: Similarity solutions to the Saint-Venant equations
    Ancey, C.
    Cochard, S.
    Rentschler, M.
    Wiederseiner, S.
    RIVER FLOW 2006, VOLS 1 AND 2, 2006, : 1463 - +
  • [8] Investigate the shock focusing under a single vortex disturbance using 2D Saint-Venant equations with a shock-capturing scheme
    Zhao, Jiaquan
    Li, Renfu
    Wu, Haiyan
    ACTA ASTRONAUTICA, 2018, 143 : 337 - 352
  • [10] The use of 2D Saint-Venant equations to design the drainage system of a forest road by simulating the dynamics of runoff numerically from the catchment to ditches and culverts
    Perez-Latorre, Francisco J.
    Moral-Erencia, Jose D.
    Garcia-Siles, Santiago
    Bohorquez, Patricio
    PROCEEDINGS OF THE 39TH IAHR WORLD CONGRESS, 2022, : 2413 - 2422