Border collision bifurcations in one-dimensional linear-hyperbolic maps

被引:12
|
作者
Gardini, Laura [1 ]
Tramontana, Fabio [1 ]
Sushko, Iryna [2 ,3 ]
机构
[1] Univ Urbino, Dept Econ & Quantitat Methods, Via Saffi 42, I-61029 Urbino, Italy
[2] Natl Acad Sci Ukraine, Inst Math, Kiev, Ukraine
[3] Kiev Sch Econ, Kiev, Ukraine
关键词
Piecewise smooth map; Border-collision bifurcation; Bistability; PIECEWISE-SMOOTH MAPS; ATTRACTING CYCLES; C-BIFURCATIONS; FAMILY;
D O I
10.1016/j.matcom.2010.10.001
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper we consider a continuous one-dimensional map, which is linear on one side of a generic kink point and hyperbolic on the other side. This kind of map is widely used in the applied context. Due to the simple expression of the two functions involved, in particular cases it is possible to determine analytically the border collision bifurcation curves that characterize the dynamic behaviors of the model. In the more general model we show that the steps to be performed are the same, although the analytical expressions are not given in explicit form. (C) 2010 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:899 / 914
页数:16
相关论文
共 50 条
  • [31] Linear and optimal non-linear control of one-dimensional maps
    Phys Lett Sect A Gen At Solid State Phys, 4-6 (361):
  • [32] Border Collision Bifurcations of Stroboscopic Maps in Periodically Driven Spiking Models
    Granados, A.
    Krupa, M.
    Clement, F.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2014, 13 (04): : 1387 - 1416
  • [33] Border-collision bifurcations on a two-dimensional torus
    Zhusubaliyev, ZT
    Soukhoterin, EA
    Mosekilde, E
    CHAOS SOLITONS & FRACTALS, 2002, 13 (09) : 1889 - 1915
  • [34] BORDER-COLLISION BIFURCATIONS IN 1D PIECEWISE-LINEAR MAPS AND LEONOV'S APPROACH
    Gardini, Laura
    Tramontana, Fabio
    Avrutin, Viktor
    Schanz, Michael
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2010, 20 (10): : 3085 - 3104
  • [35] Equilibrium States of Weakly Hyperbolic One-Dimensional Maps for Hölder Potentials
    Huaibin Li
    Juan Rivera-Letelier
    Communications in Mathematical Physics, 2014, 328 : 397 - 419
  • [36] Bifurcations in one-dimensional piecewise smooth maps-theory and applications in switching circuits
    Banerjee, S
    Karthik, MS
    Yuan, GH
    Yorke, JA
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2000, 47 (03) : 389 - 394
  • [37] Sensitivity to initial conditions at bifurcations in one-dimensional nonlinear maps: Rigorous nonextensive solutions
    Baldovin, F
    Robledo, A
    EUROPHYSICS LETTERS, 2002, 60 (04): : 518 - 524
  • [38] Border collision bifurcations in two-dimensional piecewise smooth maps (vol 59, pg 4052, 1999)
    Banerjee, S
    Grebogi, C
    PHYSICAL REVIEW E, 1999, 60 (03): : 3450 - 3450
  • [39] Approximate and exact controllability criteria for linear one-dimensional hyperbolic systems
    Chitour, Yacine
    Fueyo, Sebastien
    Mazanti, Guilherme
    Sigalotti, Mario
    SYSTEMS & CONTROL LETTERS, 2024, 190
  • [40] OPTIMAL TIME FOR THE CONTROLLABILITY OF LINEAR HYPERBOLIC SYSTEMS IN ONE-DIMENSIONAL SPACE
    Coron, Jean-Michel
    Hoai-Minh Nguyen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2019, 57 (02) : 1127 - 1156