Ancilla-Free Quantum Error Correction Codes for Quantum Metrology

被引:60
|
作者
Layden, David [1 ,2 ]
Zhou, Sisi [3 ,4 ]
Cappellaro, Paola [1 ,2 ]
Jiang, Liang [3 ,4 ]
机构
[1] MIT, Res Lab Elect, Cambridge, MA 02139 USA
[2] MIT, Dept Nucl Sci & Engn, Cambridge, MA 02139 USA
[3] Yale Univ, Dept Appl Phys & Phys, New Haven, CT 06511 USA
[4] Yale Univ, Yale Quantum Inst, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
DECOHERENCE;
D O I
10.1103/PhysRevLett.122.040502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum error correction has recently emerged as a tool to enhance quantum sensing under Markovian noise. It works by correcting errors in a sensor while letting a signal imprint on the logical state. This approach typically requires a specialized error-correcting code, as most existing codes correct away both the dominant errors and the signal. To date, however, few such specialized codes are known, among which most require noiseless, controllable ancillas. We show here that such ancillas are not needed when the signal Hamiltonian and the error operators commute, a common limiting type of decoherence in quantum sensors. We give a semidefinite program for finding optimal ancilla-free sensing codes in general, as well as closed-form codes for two common sensing scenarios: qubits undergoing dephasing, and a lossy bosonic mode. Finally, we analyze the sensitivity enhancement offered by the qubit code under arbitrary spatial noise correlations, beyond the ideal limit of orthogonal signal and noise operators.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Achieving metrological limits using ancilla-free quantum error-correcting codes
    Zhou, Sisi
    Manes, Argyris Giannisis
    Jiang, Liang
    PHYSICAL REVIEW A, 2024, 109 (04)
  • [2] Linear optical implementation of an ancilla-free quantum SWAP gate
    Wang, Hong-Fu
    Shao, Xiao-Qiang
    Zhao, Yong-Fang
    Zhang, Shou
    Yeon, Kyu-Hwang
    PHYSICA SCRIPTA, 2010, 81 (01)
  • [3] Ancilla-free scheme of deterministic topological quantum gates for Majorana qubits
    Zhang, Su-Qi
    Hong, Jian-Song
    Xue, Yuan
    Luo, Xun-Jiang
    Yu, Li-Wei
    Liu, Xiong-Jun
    Liu, Xin
    PHYSICAL REVIEW B, 2024, 109 (16)
  • [4] Quantum error correction with mixed ancilla qubits
    Criger, Ben
    Moussa, Osama
    Laflamme, Raymond
    PHYSICAL REVIEW A, 2012, 85 (04):
  • [5] Quantum Error Correction for Metrology
    Kessler, E. M.
    Lovchinsky, I.
    Sushkov, A. O.
    Lukin, M. D.
    PHYSICAL REVIEW LETTERS, 2014, 112 (15)
  • [6] Implementing ancilla-free phase covariant quantum cloning with atoms trapped in cavities
    YE Liu1
    2 Laboratory of Quantum Information
    Science China(Physics,Mechanics & Astronomy), 2011, Mechanics & Astronomy)2011 (02) : 262 - 267
  • [7] Implementing ancilla-free phase covariant quantum cloning with atoms trapped in cavities
    Liu Ye
    Wei Xiong
    AiXia Li
    GuangCan Guo
    Science China Physics, Mechanics and Astronomy, 2011, 54 : 262 - 267
  • [8] Implementing ancilla-free phase covariant quantum cloning with atoms trapped in cavities
    Ye Liu
    Xiong Wei
    Li AiXia
    Guo GuangCan
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2011, 54 (02): : 262 - 267
  • [9] Efficient Ancilla-Free Reversible and Quantum Circuits for the Hidden Weighted Bit Function
    Bravyi, Sergey
    Yoder, Theodore J.
    Maslov, Dmitri
    IEEE TRANSACTIONS ON COMPUTERS, 2022, 71 (05) : 1170 - 1180
  • [10] Optimal approximate quantum error correction for quantum metrology
    Zhou, Sisi
    Jiang, Liang
    PHYSICAL REVIEW RESEARCH, 2020, 2 (01):