Annotation of Using Borehole Time-Lapse Gravity by Genetic Algorithm Inversion for Subsurface Modeling

被引:0
|
作者
Gunawan, Indra [1 ,2 ]
Wahyudi, Eko Januari [1 ,2 ]
Alawiyah, Susanti [1 ,2 ]
Kadir, Wawan Gunawan A. [1 ,2 ]
Fauzi, Umar [3 ]
机构
[1] Inst Teknol Bandung, Fac Min & Petr Engn, Geophys Engn Dept, Jalan Ganesa 10, Bandung 40132, Indonesia
[2] Inst Teknol Bandung, Fac Min & Petr Engn, Appl & Explorat Geophys Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
[3] Inst Teknol Bandung, Fac Math & Nat Sci, Phys Earth & Complex Syst Res Grp, Jalan Ganesa 10, Bandung 40132, Indonesia
来源
关键词
genetic algorithm; gravity inversion; subsurface modeling; surface and borehole gravity; time-lapse gravity;
D O I
10.5614/j.eng.technol.sci.2020.52.2.2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present the annotation to a genetic algorithm (GA) method for an inverse synthetic subsurface density model using surface and borehole time-lapse gravity data. The objective of the inversion is to find the boundaries of the object area and background, where one bit of the chromosome represents the densities. The model that was used in this paper was a simple homogeneous body anomaly and a simplified real water mass injection model in order to argue that the code is suitable for field modeling. We show the influences of the existence of borehole gravity data and location towards the inversion, where the result indicates that an additional good borehole location could increase the success rate up to 13.33% compared to without gravity borehole data for the simple model and up to 4.39% for the field model. The inversion produced the best results when the borehole positions were placed in a state of symmetry towards the body object's mass.
引用
收藏
页码:153 / 165
页数:13
相关论文
共 50 条
  • [31] Bayesian variational time-lapse full waveform inversion
    Zhang, Xin
    Curtis, Andrew
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2024, 237 (03) : 1624 - 1638
  • [32] Bayesian time-lapse full waveform inversion using Hamiltonian Monte Carlo
    de Lima, P. D. S.
    Ferreira, M. S.
    Corso, G.
    de Araujo, J. M.
    [J]. GEOPHYSICAL PROSPECTING, 2024,
  • [33] Hybrid optimization for lithologic inversion and time-lapse monitoring using a binary formulation
    Krahenbuhl, Richard A.
    Li, Yaoguo
    [J]. GEOPHYSICS, 2009, 74 (06) : I55 - I65
  • [34] Advances in interpretation of subsurface processes with time-lapse electrical imaging
    Singha, K.
    Day-Lewis, F. D.
    Johnson, T.
    Slater, L. D.
    [J]. HYDROLOGICAL PROCESSES, 2015, 29 (06) : 1549 - 1576
  • [35] Time-lapse inversion of self-potential data using Kalman filter
    Cui Yi-An
    Wei Wen-Sheng
    Zhu Xiao-Xiong
    Liu Jian-Xin
    [J]. CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2017, 60 (08): : 3246 - 3253
  • [36] Time-lapse borehole radar monitoring of an infiltration experiment in the vadose zone
    Kuroda, S.
    Jang, H.
    Kim, H. J.
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2009, 67 (04) : 361 - 366
  • [37] Stepsize sharing in time-lapse full-waveform inversion
    Fu, Xin
    Innanen, Kristopher A.
    [J]. GEOPHYSICS, 2023, 88 (02) : M59 - M70
  • [38] The time-lapse AVO difference inversion for changes in reservoir parameters
    Zhi Longxiao
    Gu Hanming
    Li Yan
    [J]. JOURNAL OF GEOPHYSICS AND ENGINEERING, 2016, 13 (06) : 899 - 911
  • [39] Focused time-lapse inversion of radio and audio magnetotelluric data
    Rosas Carbajal, Marina
    Linde, Niklas
    Kalscheuer, Thomas
    [J]. JOURNAL OF APPLIED GEOPHYSICS, 2012, 84 : 29 - 38
  • [40] Time-lapse inversion of one-dimensional magnetotelluric data
    Dennis Conway
    Graham Heinson
    Nigel Rees
    Joseph Rugari
    [J]. Earth, Planets and Space, 70