Bayesian inference for the randomly censored Burr-type XII distribution

被引:3
|
作者
Danish, Muhammad Yameen [1 ]
Arshad, Irshad Ahmad [1 ]
Aslam, Muhammad [2 ]
机构
[1] Allama Iqbal Open Univ, Dept Stat, Islamabad, Pakistan
[2] Quaid I Azam Univ, Dept Stat, Islamabad, Pakistan
关键词
Log-concave density function; Gibbs sampling; Lindley's method; posterior predictive p-value; MCMC;
D O I
10.1080/02664763.2016.1275530
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The article presents the Bayesian inference for the parameters of randomly censored Burr-type XII distribution with proportional hazards. The joint conjugate prior of the proposed model parameters does not exist; we consider two different systems of priors for Bayesian estimation. The explicit forms of the Bayes estimators are not possible; we use Lindley's method to obtain the Bayes estimates. However, it is not possible to obtain the Bayesian credible intervals with Lindley's method; we suggest the Gibbs sampling procedure for this purpose. Numerical experiments are performed to check the properties of the different estimators. The proposed methodology is applied to a real-life data for illustrative purposes. The Bayes estimators are compared with the Maximum likelihood estimators via numerical experiments and real data analysis. The model is validated using posterior predictive simulation in order to ascertain its appropriateness.
引用
收藏
页码:270 / 283
页数:14
相关论文
共 50 条
  • [31] Inference for Burr XII distribution under Type I progressive hybrid censoring
    Kayal, T.
    Tripathi, Yogesh Mani
    Rastogi, M. K.
    Asgharzadeh, A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (09) : 7447 - 7465
  • [32] Bayesian and non-Bayesian inferences of the Burr-XII distribution for progressive first-failure censored data
    Ahmed A. Soliman
    N. A. Abou-elheggag
    A. H. Abd ellah
    A. A. Modhesh
    METRON, 2012, 70 (1) : 1 - 25
  • [33] Bayesian estimation under a mixture of the Burr type XII distribution and its reciprocal
    Ahmad, K. E.
    Jaheen, Z. F.
    Mohammed, Heba S.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2011, 81 (12) : 2121 - 2130
  • [34] Statistical inference of Burr-XII distribution under progressive Type-II censored competing risks data with binomial removals
    Qin, Xinyan
    Gui, Wenhao
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2020, 378
  • [35] Bayesian and Non-Bayesian Inference to Bivariate Alpha Power Burr-XII Distribution with Engineering Application
    Ramadan, Dina A.
    Hasaballah, Mustafa M.
    Abd-Elwaha, Nada K.
    Alshangiti, Arwa M.
    Kamel, Mahmoud I.
    Balogun, Oluwafemi Samson
    El-Awady, Mahmoud M.
    AXIOMS, 2024, 13 (11)
  • [36] On Burr XII Distribution Analysis Under Progressive Type-II Hybrid Censored Data
    M. Noori Asl
    R. Arabi Belaghi
    H. Bevrani
    Methodology and Computing in Applied Probability, 2017, 19 : 665 - 683
  • [37] Group acceptance sampling plans for resubmitted lots under Burr-type XII distributions
    Aslam, Muhammad
    Jun, Chi-Hyuck
    Lio, Y. L.
    Ahmad, Munir
    Rasool, Mujahid
    JOURNAL OF INDUSTRIAL AND PRODUCTION ENGINEERING, 2011, 28 (08) : 606 - 615
  • [38] On Burr XII Distribution Analysis Under Progressive Type-II Hybrid Censored Data
    Asl, M. Noori
    Belaghi, R. Arabi
    Bevrani, H.
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2017, 19 (02) : 665 - 683
  • [39] Statistical inference of P(X < Y) for the Burr Type XII distribution based on records
    Kizilaslan, Fatih
    Nadar, Mustafa
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2017, 46 (04): : 713 - 742
  • [40] Reliability Inference on Composite Dynamic Systems Based on Burr Type-XII Distribution
    Balakrishnan, Narayanaswamy
    Jiang, Nan
    Tsai, Tzong-Ru
    Lio, Y. L.
    Chen, Ding-Geng
    IEEE TRANSACTIONS ON RELIABILITY, 2015, 64 (01) : 144 - 153