L1 pattern matching lower bound

被引:7
|
作者
Lipsky, Ohad [1 ]
Porat, Ely [1 ]
机构
[1] Bar Ilan Univ, Dept Comp Sci, IL-52900 Ramat Gan, Israel
关键词
lower bound; pattern matching; analysis of algorithms; time series analysis;
D O I
10.1016/j.ipl.2007.08.011
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let a text string T = t(0),..., t(n-1) and a pattern string P = P-0,...,Pm-1, t(i), p(j) is an element of N be given. In the Approximate Pattern Matching in the L-1 metric problem (L-1-matching for short) the output is, for every text location i, the L-1 distance between the pattern and the length m substring of the text starting at i, i.e. Sigma(m-1)(j=0)vertical bar t(i+j) - p(j)vertical bar. The Less Than Matching problem is that of finding all locations i of T where t(i+j) >= p(j), j = 0,..., m - 1. The String Matching with Mismatches problem is that of finding the number of mismatches between the pattern and every length m substring of the text. For the three above problems, the fastest known deterministic solution is O(n root m log m) time. In this paper we show that the latter two problems can be linearly reduced to the problem of L-1-matching. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:141 / 143
页数:3
相关论文
共 50 条
  • [31] On the lower bound for parallel string matching
    Galley, CN
    Iliopoulos, CS
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1996, 62 (3-4) : 155 - 162
  • [32] A LOWER BOUND FOR PARALLEL STRING MATCHING
    BRESLAUER, D
    GALIL, Z
    SIAM JOURNAL ON COMPUTING, 1992, 21 (05) : 856 - 862
  • [33] Local geometry of L1 ∩ L∞ and L1 + L∞
    Hudzik H.
    Kamińska A.
    Mastyło M.
    Archiv der Mathematik, 1997, 68 (2) : 159 - 168
  • [34] SUBSPACES OF L1 CONTAINING L1
    ENFLO, P
    STARBIRD, TW
    STUDIA MATHEMATICA, 1979, 65 (02) : 203 - 225
  • [35] THE L1 STRUCTURE OF WEAK L1
    KUPKA, J
    PECK, NT
    MATHEMATISCHE ANNALEN, 1984, 269 (02) : 235 - 262
  • [36] Convex representation for lower semicontinuous envelopes of functionals in L1
    Chambolle, A
    JOURNAL OF CONVEX ANALYSIS, 2001, 8 (01) : 149 - 170
  • [37] QUASI-CONVEX INTEGRANDS AND LOWER SEMICONTINUITY IN L1
    FONSECA, I
    MULLER, S
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (05) : 1081 - 1098
  • [38] A sharp nonasymptotic bound and phase diagram of L1/2 regularization
    Hai Zhang
    Zong Ben Xu
    Yao Wang
    Xiang Yu Chang
    Yong Liang
    Acta Mathematica Sinica, English Series, 2014, 30 : 1242 - 1258
  • [39] A Sharp Nonasymptotic Bound and Phase Diagram of L1/2 Regularization
    Zhang, Hai
    Xu, Zong Ben
    Wang, Yao
    Chang, Xiang Yu
    Liang, Yong
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) : 1242 - 1258
  • [40] L1 IMPULSE-RESPONSE ERROR BOUND FOR BALANCED TRUNCATION
    LAM, J
    ANDERSON, BDO
    SYSTEMS & CONTROL LETTERS, 1992, 18 (02) : 129 - 137