Leveraging Machine Learning for Millimeter Wave Beamforming in Beyond 5G Networks

被引:16
|
作者
ElHalawany, Basem M. [1 ,2 ]
Hashima, Sherief [3 ,4 ]
Hatano, Kohei [4 ,5 ]
Wu, Kaishun [1 ,6 ]
Mohamed, Ehab Mahmoud [7 ,8 ]
机构
[1] Shenzhen Univ, Sch Comp Sci, Shenzhen 518060, Peoples R China
[2] Benha Univ, Cairo 11241, Egypt
[3] RIKEN AIP, Kyushu, Saitama, Japan
[4] Egyptian Atom Energy Author, Cairo 13759, Egypt
[5] Kyushu Univ, Fukuoka 8190395, Japan
[6] Guangzhou HKUST Fok Ying Tung Res Inst, Guangzhou 511458, Peoples R China
[7] Prince Sattam Bin Abdulaziz Univ, Coll Engn, Wadi Al Dwaser 11991, Saudi Arabia
[8] Aswan Univ, Fac Engn, Aswan 81542, Egypt
来源
IEEE SYSTEMS JOURNAL | 2022年 / 16卷 / 02期
基金
中国国家自然科学基金;
关键词
Training; Feature extraction; 5G mobile communication; Sensors; Recurrent neural networks; Location awareness; IEEE; 802; 11; Standard; Beamforming training (BT); deep learning; machine learning (ML); millimeter wave (mmWave); multiarmed bandit (MAB); BEAM SELECTION; NEURAL-NETWORK; MASSIVE MIMO; MOBILE; NOMA; ALLOCATION; ALIGNMENT;
D O I
10.1109/JSYST.2021.3089536
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Millimeter wave (mmWave) communication has attracted considerable attention as a key technology for the next-generation wireless communications thanks to its exceptional advantages. MmWave leads the way to achieve a high transmission quality with directed narrow beams from source to multiple destinations by adopting different antenna beamforming (BF) techniques, which have a pivotal role in establishing and maintaining robust links. However, realizing such BF gains in practice requires overcoming several challenges, such as severe signal deterioration, hardware constraints, and design complexity. The elevated complexity of configuring mmWave BF vectors encourages researchers to leverage relevant machine learning (ML) techniques for better BF configurations deployment in 5G and beyond. In this article, we summarize mmWave BF strategies employed for future wireless networks. Then, we provide a comprehensive overview of ML techniques plus its applications and promising contributions toward efficient mmWave BF deployment. Furthermore, we discuss mmWave BF's future research directions and challenges. Finally, we discuss a single and concurrent mmWave BF case study by applying multiarmed bandit to confirm the superiority of ML-based methods over conventional ones.
引用
下载
收藏
页码:1739 / 1750
页数:12
相关论文
共 50 条
  • [1] A Machine Learning Adaptive Beamforming Framework for 5G Millimeter Wave Massive MIMO Multicellular Networks
    Lavdas, Spyros
    Gkonis, Panagiotis K.
    Zinonos, Zinon
    Trakadas, Panagiotis
    Sarakis, Lambros
    Papadopoulos, Konstantinos
    IEEE ACCESS, 2022, 10 : 91597 - 91609
  • [2] Reducing the System Overhead of Millimeter-Wave Beamforming With Neural Networks for 5G and Beyond
    Xue, Pengfei
    Huang, Yuhong
    Zhu, Dongzhi
    Zhao, Youping
    Sun, Chen
    IEEE ACCESS, 2021, 9 : 165956 - 165965
  • [3] Throughput Based Adaptive Beamforming in 5G Millimeter Wave Massive MIMO Cellular Networks via Machine Learning
    Lavdas, Spyros
    Gkonis, Panagiotis
    Zinonos, Zinon
    Trakadas, Panagiotis
    Sarakis, Lambros
    2022 IEEE 95TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-SPRING), 2022,
  • [4] Leveraging Machine-Learning for D2D Communications in 5G/Beyond 5G Networks
    Hashima, Sherief
    ElHalawany, Basem M.
    Hatano, Kohei
    Wu, Kaishun
    Mohamed, Ehab Mahmoud
    ELECTRONICS, 2021, 10 (02) : 1 - 16
  • [5] Beamforming Performance Analysis of Millimeter-Wave 5G Wireless Networks
    Saraereh, Omar A.
    Ali, Ashraf
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 70 (03): : 5383 - 5397
  • [6] Downlink Coordinated Beamforming Policies for 5G Millimeter Wave Dense Networks
    Gatzianas, M.
    Kalfas, G.
    Vagionas, C.
    Mesodiakaki, A.
    2019 EUROPEAN CONFERENCE ON NETWORKS AND COMMUNICATIONS (EUCNC), 2019, : 342 - 346
  • [7] A Deep Learning Framework for Adaptive Beamforming in Massive MIMO Millimeter Wave 5G Multicellular Networks
    Lavdas, Spyros
    Gkonis, Panagiotis K.
    Tsaknaki, Efthalia
    Sarakis, Lambros
    Trakadas, Panagiotis
    Papadopoulos, Konstantinos
    ELECTRONICS, 2023, 12 (17)
  • [8] Hybrid Beamforming for 5G and Beyond Millimeter-Wave Systems: A Holistic View
    Zhang, Jun
    Yu, Xianghao
    Letaief, Khaled B.
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2020, 1 : 77 - 91
  • [9] MILLIMETER AND THZ WAVE FOR 5G AND BEYOND
    Jianhua Zhang
    Kai Kang
    Yongming Huang
    Mansoor Shafi
    Andreas F.Molisch
    China Communications, 2019, 16 (02) : 6 - 9
  • [10] MILLIMETER AND THZ WAVE FOR 5G AND BEYOND
    Zhang, Jianhua
    Kang, Kai
    Huang, Yongming
    Shafi, Mansoor
    Molisch, Andreas F.
    CHINA COMMUNICATIONS, 2019, 16 (02) : III - VI