Throughput Based Adaptive Beamforming in 5G Millimeter Wave Massive MIMO Cellular Networks via Machine Learning

被引:0
|
作者
Lavdas, Spyros [1 ,4 ]
Gkonis, Panagiotis [2 ]
Zinonos, Zinon [1 ]
Trakadas, Panagiotis [3 ]
Sarakis, Lambros [2 ]
机构
[1] Neapolis Univ, Dept Comp Sci, CY-8042 Paphos, Cyprus
[2] Natl & Kapodistrian Univ Athens, Dept Digital Ind Technol, Dirfies Messapies, Greece
[3] Natl & Kapodistrian Univ Athens, Dept Port Management & Shipping, Dirfies Messapies, Greece
[4] Metropolitan Coll, 74 Sorou St, Athens 11525, Greece
关键词
5G; machine learning; massive MIMO; millimeter wave transmission; system level simulations;
D O I
10.1109/VTC2022-Spring54318.2022.9860566
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper the performance of an adaptive beamforming framework is evaluated, when deployed in fifth-generation massive multiple-input multiple-output millimeter wave cellular networks. To this end, active beams are formed dynamically according to traffic demands, in order to maximize spectral and energy efficiency (SE, EE) with reduced hardware and algorithmic complexity. In the same context, a machine learning (ML) approach is considered as well, where the configuration of the active beams per cell is directly related to the requested throughput in the cell's angular space. According to the presented results, the ML-assisted beamforming framework can improve EE with reduced algorithmic complexity compared to the non-ML case, depending on the tolerable amount of blocking probability.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [1] A Machine Learning Adaptive Beamforming Framework for 5G Millimeter Wave Massive MIMO Multicellular Networks
    Lavdas, Spyros
    Gkonis, Panagiotis K.
    Zinonos, Zinon
    Trakadas, Panagiotis
    Sarakis, Lambros
    Papadopoulos, Konstantinos
    IEEE ACCESS, 2022, 10 : 91597 - 91609
  • [2] A Deep Learning Framework for Adaptive Beamforming in Massive MIMO Millimeter Wave 5G Multicellular Networks
    Lavdas, Spyros
    Gkonis, Panagiotis K.
    Tsaknaki, Efthalia
    Sarakis, Lambros
    Trakadas, Panagiotis
    Papadopoulos, Konstantinos
    ELECTRONICS, 2023, 12 (17)
  • [3] Machine Learning-Based Beamforming Algorithm for Massive MIMO Systems in 5G Networks
    Upadhyay, Shrikant
    Juluru, Tarun Kumar
    Deshmukh, Pooja, V
    Pawar, Aarti Prasad
    Mane, Snehal Chandrakant
    Singh, Charanjeet
    Shrivastava, Anurag
    JOURNAL OF ELECTRICAL SYSTEMS, 2024, 20 (03) : 971 - 979
  • [4] Leveraging Machine Learning for Millimeter Wave Beamforming in Beyond 5G Networks
    ElHalawany, Basem M.
    Hashima, Sherief
    Hatano, Kohei
    Wu, Kaishun
    Mohamed, Ehab Mahmoud
    IEEE SYSTEMS JOURNAL, 2022, 16 (02): : 1739 - 1750
  • [5] Digital Beamforming-Based Massive MIMO Transceiver for 5G Millimeter-Wave Communications
    Yang, Binqi
    Yu, Zhiqiang
    Lan, Ji
    Zhang, Ruoqiao
    Zhou, Jianyi
    Hong, Wei
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2018, 66 (07) : 3403 - 3418
  • [6] Robust Hybrid Beamforming Scheme for Millimeter-Wave Massive-MIMO 5G Wireless Networks
    Mohammed, Saleem Latteef
    Alsharif, Mohammed H.
    Gharghan, Sadik Kamel
    Khan, Imran
    Albreem, Mahmoud
    SYMMETRY-BASEL, 2019, 11 (11):
  • [7] Deep Learning Based Massive MIMO Beamforming for 5G Mobile Network
    Maksymyuk, Taras
    Gazda, Juraj
    Yaremko, Oleh
    Nevinskiy, Denys
    PROCEEDINGS OF THE 2018 IEEE 4TH INTERNATIONAL SYMPOSIUM ON WIRELESS SYSTEMS WITHIN THE INTERNATIONAL CONFERENCES ON INTELLIGENT DATA ACQUISITION AND ADVANCED COMPUTING SYSTEMS (IDAACS-SWS), 2018, : 241 - 244
  • [8] Massive MIMO technology for 5G adaptive networks
    Gheorghe, Cristina-Gabriela
    Dragomir, Radu
    Stoichescu, Dan Alexandru
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON ELECTRONICS, COMPUTERS AND ARTIFICIAL INTELLIGENCE (ECAI-2019), 2019,
  • [9] Machine Learning Aided Hybrid Beamforming in Massive-MIMO Millimeter Wave Systems
    Aljumaily, Mustafa S.
    Li, Husheng
    2019 IEEE INTERNATIONAL SYMPOSIUM ON DYNAMIC SPECTRUM ACCESS NETWORKS (DYSPAN), 2019, : 457 - 462
  • [10] A Proposed Efficient Hybrid Precoding Algorithm for Millimeter Wave Massive MIMO 5G Networks
    A. Abdelaziz Salem
    S. El-Rabaie
    Mona Shokair
    Wireless Personal Communications, 2020, 112 : 149 - 167