Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics

被引:31
|
作者
Zhang, Nanlin [1 ]
Neo, Darren C. J. [1 ]
Tazawa, Yujiro [1 ]
Li, Xiuting [2 ]
Assender, Hazel E. [1 ]
Compton, Richard G. [2 ]
Wattt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
基金
英国工程与自然科学研究理事会;
关键词
quantum dot; solar cell; band alignment optimization; surface treatment; band gap control; SOLAR-CELLS; PBS; SOLIDS; PASSIVATION; DEVICES;
D O I
10.1021/acsami.6b01018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 +/- 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.
引用
收藏
页码:21417 / 21422
页数:6
相关论文
共 50 条
  • [31] Crack-Free Conjugated PbS Quantum Dot-Hole Transport Layers for Solar Cells
    Sharma, Ashish
    Dambhare, Neha, V
    Bera, Jayanta
    Sahu, Satyajit
    Rath, Arup K.
    ACS APPLIED NANO MATERIALS, 2021, 4 (04) : 4016 - 4025
  • [32] Quantum transport in narrow-gap semiconductor nanocolumns
    Lueth, H.
    Bloemers, Ch.
    Richter, Th.
    Wensorra, J.
    Hernandez, S. Estevez
    Petersen, G.
    Lepsa, M.
    Schaepers, Th.
    Marso, M.
    Indlekofer, M.
    Calarco, R.
    Demarina, N.
    Gruetzmacher, D.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 2, 2010, 7 (02): : 386 - 389
  • [33] The effect of band gap alignment on the hole transport from semiconducting block copolymers to quantum dots
    zur Borg, Lisa
    Lee, Donggu
    Lim, Jaehoon
    Bae, Wan Ki
    Park, Myeongjin
    Lee, Seonghoon
    Lee, Changhee
    Char, Kookheon
    Zentel, Rudolf
    JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (09) : 1722 - 1726
  • [34] Transport Through a Quantum Dot with Coulombic Dot-Lead Coupling
    Yang, Kai-Hua
    Chen, Yang
    Wang, Huai-Yu
    Liu, Bei-Yun
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2013, 170 (1-2) : 116 - 130
  • [35] Transport through a quantum dot with excitonic dot-lead coupling
    Elste, Florian
    Reichman, David R.
    Millis, Andrew J.
    PHYSICAL REVIEW B, 2011, 83 (08)
  • [36] Transport Through a Quantum Dot with Coulombic Dot-Lead Coupling
    Kai-Hua Yang
    Yang Chen
    Huai-Yu Wang
    Bei-Yun Liu
    Journal of Low Temperature Physics, 2013, 170 : 116 - 130
  • [37] Interband transitions in a narrow-gap InSb cylindrical quantum dot
    E. M. Kazaryan
    A. V. Meliksetyan
    H. A. Sarkisyan
    Technical Physics Letters, 2007, 33 : 964 - 967
  • [38] Interband transitions in a narrow-gap InSb cylindrical quantum dot
    Kazaryan, E. M.
    Meliksetyan, A. V.
    Sarkisyan, H. A.
    TECHNICAL PHYSICS LETTERS, 2007, 33 (11) : 964 - 967
  • [39] Photoemission measurements of quantum states in accumulation layers at narrow band gap III-V semiconductor surfaces
    Aristov, VY
    Zhilin, VM
    Grupp, C
    Taleb-Ibrahimi, A
    Kim, HJ
    Mangat, PS
    Soukiassian, P
    Le Lay, G
    APPLIED SURFACE SCIENCE, 2000, 166 (1-4) : 263 - 267
  • [40] Quantum confinement induced shift in energy band edges and band gap of a spherical quantum dot
    Borah, P.
    Siboh, D.
    Kalita, P. K.
    Sarma, J. K.
    Nath, N. M.
    PHYSICA B-CONDENSED MATTER, 2018, 530 : 208 - 214