Narrow Band Gap Lead Sulfide Hole Transport Layers for Quantum Dot Photovoltaics

被引:31
|
作者
Zhang, Nanlin [1 ]
Neo, Darren C. J. [1 ]
Tazawa, Yujiro [1 ]
Li, Xiuting [2 ]
Assender, Hazel E. [1 ]
Compton, Richard G. [2 ]
Wattt, Andrew A. R. [1 ]
机构
[1] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[2] Univ Oxford, Dept Chem, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
基金
英国工程与自然科学研究理事会;
关键词
quantum dot; solar cell; band alignment optimization; surface treatment; band gap control; SOLAR-CELLS; PBS; SOLIDS; PASSIVATION; DEVICES;
D O I
10.1021/acsami.6b01018
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The band structure of colloidal quantum dot (CQD) bilayer heterojunction solar cells is optimized using a combination of ligand modification and QD band gap control. Solar cells with power conversion efficiencies of up to 9.33 +/- 0.50% are demonstrated by aligning the absorber and hole transport layers (HTL). Key to achieving high efficiencies is optimizing the relative position of both the valence band and Fermi energy at the CQD bilayer interface. By comparing different band gap CQDs with different ligands, we find that a smaller band gap CQD HTL in combination with a more p-type-inducing CQD ligand is found to enhance hole extraction and hence device performance. We postulate that the efficiency improvements observed are largely due to the synergistic effects of narrower band gap QDs, causing an upshift of valence band position due to 1,2-ethanedithiol (EDT) ligands and a lowering of the Fermi level due to oxidation.
引用
收藏
页码:21417 / 21422
页数:6
相关论文
共 50 条
  • [1] Minority Carrier Transport in Lead Sulfide Quantum Dot Photovoltaics
    Rekemeyer, Paul H.
    Chuang, Chia-Hao M.
    Bawendi, Moungi G.
    Gradecak, Silvija
    NANO LETTERS, 2017, 17 (10) : 6221 - 6227
  • [2] Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics
    Jean, Joel
    Xiao, Justin
    Nick, Robert
    Moody, Nicole
    Nasilowski, Michel
    Bawendi, Moungi
    Bulovic, Vladimir
    ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (09) : 2295 - 2305
  • [3] PbS quantum dot solids and quantum dot size gradient layers for photovoltaics
    Zvaigzne, M.
    Aleksandrov, A.
    Goltyapin, Y.
    Nikitenko, V
    Chistyakov, A.
    Tameev, A.
    OPTOELECTRONIC DEVICES AND INTEGRATION VII, 2018, 10814
  • [4] New Chalcogenide-Based Hole Transport Materials for Colloidal Quantum Dot Photovoltaics
    Rong, Eric
    Chiu, Arlene
    Bambini, Christianna
    Lin, Yida
    Lu, Chengchangfeng
    Thon, Susanna M.
    2021 IEEE 48TH PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2021, : 750 - 753
  • [5] Decreased Synthesis Costs and Waste Product Toxicity for Lead Sulfide Quantum Dot Ink Photovoltaics
    Moody, Nicole
    Yoon, Dasol
    Johnson, Anna
    Wassweiler, Ella
    Nasilowski, Michel
    Bulovic, Vladimir
    Bawendi, Moungi G.
    ADVANCED SUSTAINABLE SYSTEMS, 2019, 3 (10):
  • [6] Impurity states in a narrow band gap semiconductor quantum dot with parabolic confinement potential
    Kazaryan, EM
    Petrosyan, LS
    Sarkisyan, HA
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 16 (02): : 174 - 178
  • [7] NiO as Hole Transport Layers for All-inorganic Quantum Dot LEDs
    Tang, L. Y.
    Zhang, X. L.
    Dai, H. T.
    Zhao, J. L.
    Wang, S. G.
    Sun, X. W.
    LIGHT-EMITTING DIODES: MATERIALS, DEVICES, AND APPLICATIONS FOR SOLID STATE LIGHTING XVII, 2013, 8641
  • [8] New Hole Transport Materials via Stoichiometry-Tuning for Colloidal Quantum Dot Photovoltaics
    Chiu, Arlene
    Bambini, Christianna
    Rong, Eric
    Lin, Yida
    Thon, Susanna M.
    2020 47TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 2020, : 1096 - 1097
  • [10] Towards All-Inorganic Transport Layers for Wide-Band-Gap Formamidinium Lead Bromide-Based Planar Photovoltaics
    Subbiah, Anand S.
    Mahuli, Neha
    Agarwal, Sumanshu
    van Hest, Maikel F. A. M.
    Sarkar, Shaibal K.
    ENERGY TECHNOLOGY, 2017, 5 (10) : 1800 - 1806