Special quasigraded lie algebras and integrable hamiltonian systems

被引:5
|
作者
Skrypnyk, T. [1 ]
机构
[1] NASU, Inst Math, Bogoliubov Inst Theroret Phys, UA-03143 Kiev, Ukraine
关键词
quasigraded Lie algebras; integrable Hamiltonian systems;
D O I
10.1007/s10440-007-9165-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct a family of special quasigraded Lie algebras similar to g(F) of functions of one complex variables with values in finite-dimensional Lie algebra g, labeled by the special 2-cocycles F on g. The main property of the constructed Lie algebras similar to g(F) is that they admit Kostant-Adler-Symes scheme. Using them we obtain new integrable finite-dimensional Hamiltonian systems and new hierarchies of soliton equations.
引用
收藏
页码:261 / 282
页数:22
相关论文
共 50 条
  • [21] SPECIAL ODD HAMILTONIAN MODULAR LIE ALGEBRAS
    Bai, Wei
    Liu, Wende
    COLLOQUIUM MATHEMATICUM, 2017, 146 (02) : 253 - 263
  • [22] INTEGRABLE COUPLING SYSTEMS OF HAMILTONIAN LATTICE EQUATIONS BY SEMI-DIRECT SUMS OF LIE ALGEBRAS
    Zhu, Li-Li
    Du, Jun
    Ma, Xiao-Yan
    Sang, Sheng-Ju
    MODERN PHYSICS LETTERS B, 2010, 24 (07): : 681 - 694
  • [23] Completely Integrable Systems Connected with Lie Algebras
    Stanisław P. Kasperczuk
    Celestial Mechanics and Dynamical Astronomy, 2000, 76 : 215 - 227
  • [24] Automorphic Lie algebras and corresponding integrable systems
    Bury, Rhys T.
    Mikhailov, Alexander V.
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2021, 74
  • [25] Integrable Systems Associated to the Filtrations of Lie Algebras
    Božidar Jovanović
    Tijana Šukilović
    Srdjan Vukmirović
    Regular and Chaotic Dynamics, 2023, 28 : 44 - 61
  • [26] Integrable Systems Associated to the Filtrations of Lie Algebras
    Jovanovic, Bozidar
    Sukilovic, Tijana
    Vukmirovic, Srdjan
    REGULAR & CHAOTIC DYNAMICS, 2023, 28 (01): : 44 - 61
  • [27] Completely integrable systems connected with Lie algebras
    Kasperczuk, SP
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2000, 76 (04): : 215 - 227
  • [28] Geometry of the singularities of integrable systems on Lie algebras
    Brailov, YA
    DOKLADY MATHEMATICS, 2003, 68 (03) : 358 - 360
  • [29] Integrable quantum spin chains, non-skew symmetric r-matrices and quasigraded Lie algebras
    Skrypnyk, T.
    JOURNAL OF GEOMETRY AND PHYSICS, 2006, 57 (01) : 53 - 67
  • [30] Quasigraded Lie Algebras and Modified Toda Field Equations
    Skrypnyk, Taras V.
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2006, 2