Distance measures for embedded graphs

被引:0
|
作者
Akitaya, Hugo A. [1 ]
Buchin, Maike [2 ]
Kilgus, Bernhard [2 ]
Sijben, Stef [2 ]
Wenk, Carola [3 ]
机构
[1] Tufts Univ, Dept Comp Sci, Medford, MA 02155 USA
[2] Ruhr Univ Bochum, Dept Math, Bochum, Germany
[3] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
基金
美国国家科学基金会;
关键词
Frechet distance; Graph comparison; Embedded graphs;
D O I
10.1016/j.comgeo.2020.101743
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce new distance measures for comparing straight-line embedded graphs based on the Frechet distance and the weak Frechet distance. These graph distances are defined using continuous mappings and thus take the combinatorial structure as well as the geometric embeddings of the graphs into account. We present a general algorithmic approach for computing these graph distances. Although we show that deciding the distances is NP-hard for general embedded graphs, we prove that our approach yields polynomial time algorithms if the graphs are trees, and for the distance based on the weak Frechet distance if the graphs are planar embedded and if the embedding meets a certain geometric restriction. Moreover, we prove that deciding the distances based on the Frechet distance remains NP-hard for planar embedded graphs and show how our general algorithmic approach yields an exponential time algorithm and a polynomial time approximation algorithm for this case. (C) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] On the distance and distance Laplacian eigenvalues of graphs
    Lin, Huiqiu
    Wu, Baoyindureng
    Chen, Yingying
    Shu, Jinlong
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 492 : 128 - 135
  • [22] DISTANCE SPECTRA AND DISTANCE ENERGIES OF ITERATED LINE GRAPHS OF REGULAR GRAPHS
    Ramane, H. S.
    Revankar, D. S.
    Gutman, I.
    Walikar, H. B.
    [J]. PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2009, 85 (99): : 39 - 46
  • [23] Measures of Distance
    Prakash, Inney
    [J]. SIGHT AND SOUND, 2023, 33 (03): : 45 - 45
  • [24] DENSELY EMBEDDED GRAPHS
    ARCHDEACON, D
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1992, 54 (01) : 13 - 36
  • [25] Isometrically embedded graphs
    Boutin, DL
    [J]. ARS COMBINATORIA, 2005, 77 : 97 - 108
  • [26] Extremal embedded graphs
    Yan, Qi
    Jin, Xian'an
    [J]. ARS MATHEMATICA CONTEMPORANEA, 2019, 17 (02) : 637 - 652
  • [27] On graphs embedded in a surface
    Prishlyak, AO
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1997, 52 (04) : 844 - 845
  • [28] Entanglement of Embedded Graphs
    Castle, Toen
    Evans, Myfanwy E.
    Hyde, Stephen T.
    [J]. PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2011, (191): : 235 - 244
  • [29] Unlinked embedded graphs
    Barrett, JW
    [J]. DIAGRAMMATIC MORPHISMS AND APPLICATIONS, 2003, 318 : 23 - 27
  • [30] A Shapley distance in graphs
    Gallardo, J. M.
    Jimenez, N.
    Jimenez-Losada, A.
    [J]. INFORMATION SCIENCES, 2018, 432 : 269 - 277