Let F-1 : X -> Y-1 and F-2: X -> Y-2 be any convex-valued lower semicontinuous mappings and let L: Y-1 circle plus Y-2 -> Y be any linear surjection. The splitting problem is the problem of representation of any continuous selection f of the composite mapping L(F-1; F-2) in the form f = L(f(1); f(2)), where f(1) and f(2) are some continuous selections of F-1 and F-2, respectively. We prove that the splitting problem always admits an approximate solution with f(i) being an epsilon-selection (Theorem 2.1). We also propose a special case of finding exact splittings, whose occurrence is stable with respect to continuous variations of the data (Theorem 3.1) and we show that, in general, exact splittings do not exist even for the finite-dimensional range. (c) 2007 Elsevier Inc. All rights reserved.
机构:
Moscow Inst Phys & Technol, Dept Higher Math, Dolgoprudnyi 141700, Moscow Region, RussiaUniv Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Balashov, Maxim V.
Repovs, Dusan
论文数: 0引用数: 0
h-index: 0
机构:
Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
Univ Ljubljana, Fac Educ, Ljubljana 1000, SloveniaUniv Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
机构:
Leonhard Euler International Mathematical Institute, St PetersburgLeonhard Euler International Mathematical Institute, St Petersburg
Moseeva T.
Tarasov A.
论文数: 0引用数: 0
h-index: 0
机构:
St. Petersburg State University, St. PetersburgLeonhard Euler International Mathematical Institute, St Petersburg
Tarasov A.
Zaporozhets D.
论文数: 0引用数: 0
h-index: 0
机构:
St. Petersburg Department of the Steklov Institute of Mathematics, St. PetersburgLeonhard Euler International Mathematical Institute, St Petersburg
机构:
Univ Marne Vallee, Equipe Analyse & Math Appliquees, F-93166 Noisy Le Grand, FranceUniv Marne Vallee, Equipe Analyse & Math Appliquees, F-93166 Noisy Le Grand, France