Proposal for a quantum interface between photonic and superconducting qubits

被引:9
|
作者
Tsuchimoto, Yuta [1 ]
Knuppel, Patrick [1 ]
Delteil, Aymeric [1 ]
Sun, Zhe [1 ]
Kroner, Martin [1 ]
Imamoglu, Atac [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
OPTICAL PHOTONS; MICROWAVE; CONVERSION; TRANSDUCER; CIRCUITS; SYSTEM; STATES; WAVES;
D O I
10.1103/PhysRevB.96.165312
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We show that optically active coupled quantum dots embedded in a superconducting microwave cavity can be used to realize a fast quantum interface between photonic and transmon qubits. Single-photon absorption by a coupled quantum dot results in generation of a large electric dipole, which in turn ensures efficient coupling to the microwave cavity. Using cavity parameters achieved in prior experiments, we estimate that bidirectional microwave-optics conversion in nanosecond time scales with efficiencies approaching unity is experimentally feasible with current technology. We also outline a protocol for in-principle deterministic quantum state transfer from a time-bin photonic qubit to a transmon qubit. Recent advances in quantum-dot-based quantum photonics technologies indicate that the scheme we propose could play a central role in connecting quantum nodes incorporating cavity-coupled superconducting qubits.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Proposal to generate robust entanglement between distant superconducting qubits mediated via telecom photons
    Kumar, Sourabh
    Lauk, Nikolai
    Simon, Christoph
    [J]. 2018 IEEE PHOTONICS SOCIETY SUMMER TOPICAL MEETING SERIES (SUM), 2018, : 253 - 254
  • [42] A blueprint for demonstrating quantum supremacy with superconducting qubits
    Neill, C.
    Roushan, P.
    Kechedzhi, K.
    Boixo, S.
    Isakov, S. V.
    Smelyanskiy, V.
    Megrant, A.
    Chiaro, B.
    Dunsworth, A.
    Arya, K.
    Barends, R.
    Burkett, B.
    Chen, Y.
    Chen, Z.
    Fowler, A.
    Foxen, B.
    Giustina, M.
    Graff, R.
    Jeffrey, E.
    Huang, T.
    Kelly, J.
    Klimov, P.
    Lucero, E.
    Mutus, J.
    Neeley, M.
    Quintana, C.
    Sank, D.
    Vainsencher, A.
    Wenner, J.
    White, T. C.
    Neven, H.
    Martinis, J. M.
    [J]. SCIENCE, 2018, 360 (6385) : 195 - 198
  • [43] Adiabatic quantum simulations with driven superconducting qubits
    Roth, Marco
    Moll, Nikolaj
    Salis, Gian
    Ganzhorn, Marc
    Egger, Daniel J.
    Filipp, Stefan
    Schmidt, Sebastian
    [J]. PHYSICAL REVIEW A, 2019, 99 (02)
  • [44] Special issue on quantum computing with superconducting qubits
    Alexander N. Korotkov
    [J]. Quantum Information Processing, 2009, 8 : 51 - 54
  • [45] Coherent router for quantum networks with superconducting qubits
    Christensen, K. S.
    Rasmussen, S. E.
    Petrosyan, D.
    Zinner, N. T.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [46] Multilevel quantum description of decoherence in superconducting qubits
    Burkard, G
    Koch, RH
    DiVincenzo, DP
    [J]. PHYSICAL REVIEW B, 2004, 69 (06):
  • [47] Integrated photonic quantum gates for polarization qubits
    Crespi, Andrea
    Ramponi, Roberta
    Osellame, Roberto
    Sansoni, Linda
    Bongioanni, Irene
    Sciarrino, Fabio
    Vallone, Giuseppe
    Mataloni, Paolo
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [48] Fiber loop quantum buffer for photonic qubits
    Lee, Kim Fook
    Gul, Gamze
    Jim, Zhao
    Kumar, Prem
    [J]. NEW JOURNAL OF PHYSICS, 2024, 26 (08):
  • [49] Accelerated Quantum Adiabatic Transfer in Superconducting Qubits
    Zheng, Wen
    Xu, Jianwen
    Wang, Zhimin
    Dong, Yuqian
    Lan, Dong
    Tan, Xinsheng
    Yu, Yang
    [J]. PHYSICAL REVIEW APPLIED, 2022, 18 (04)
  • [50] Materials physics and quantum coherence in superconducting qubits
    Beasley, MR
    [J]. JOURNAL OF SUPERCONDUCTIVITY, 2004, 17 (05): : 663 - 667