Stochastic inversion of seismic PP and PS data for reservoir parameter estimation

被引:7
|
作者
Chen, Jinsong [1 ]
Glinsky, Michael E. [2 ]
机构
[1] Univ Calif Berkeley, Lawrence Berkeley Natl Lab, Div Earth Sci, Berkeley, CA 94720 USA
[2] ION Geophys, Houston, TX USA
关键词
VELOCITY; DENSITY; MODEL;
D O I
10.1190/GEO2013-0456.1
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We have investigated the value of isotropic seismic converted-wave (i.e., PS) data for reservoir parameter estimation using stochastic approaches based on a floating-grain rock-physics model. We first performed statistical analysis on a simple two-layer model built on actual borehole logs and compared the relative value of PS data versus amplitude-variation-with-offset (AVO) gradient data for estimating the floating-grain fraction. We found that PS data were significantly more informative than AVO gradient data in terms of likelihood functions, and the combination of PS and AVO gradient data together with PP data provided the maximal value for the reservoir parameter estimation. To evaluate the value of PS data under complex situations, we developed a hierarchical Bayesian model to combine seismic PP and PS data and their associated time registration. We extended a model-based Bayesian method developed previously for inverting seismic PP data only, by including PS responses and time registration as additional data and PS traveltime and reflectivity as additional variables. We applied the method to a synthetic six-layer model that closely mimics real field scenarios. We found that PS data provided more information than AVO gradient data for estimating the floating-grain fraction, porosity, net-to-gross, and layer thicknesses when their corresponding priors were weak.
引用
收藏
页码:R233 / R246
页数:14
相关论文
共 50 条
  • [21] The joint nonhyperbolic moveout inversion of PP and PS data in VTI media
    Grechka, V
    Tsvankin, I
    GEOPHYSICS, 2002, 67 (06) : 1929 - 1932
  • [22] Anisotropic inversion and imaging of PP and PS reflection data in the North Sea
    Grechka, Vladimir
    Tsvankin, Ilya
    Bakulin, Andrey
    Signer, Claude
    Hansen, Jan Ove
    Leading Edge (Tulsa, OK), 2002, 21 (01): : 90 - 97
  • [23] Joint PP-PS seismic prestack inversion of thin-bed reservoirs
    Yang, Chun
    Wang, Yun
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2022, 19 (04) : 897 - 913
  • [24] Parallel Implementation of Stochastic Inversion of Seismic Tomography Data
    Dwornik, Maciej
    Pieta, Anna
    PARALLEL PROCESSING AND APPLIED MATHEMATICS, PT II, 2012, 7204 : 353 - 360
  • [25] Bayesian seismic waveform inversion: Parameter estimation and uncertainty analysis
    Gouveia, WP
    Scales, JA
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1998, 103 (B2) : 2759 - 2779
  • [26] Stochastic reservoir characterization using prestack seismic data
    Eidsvik, J
    Avseth, P
    Omre, H
    Mukerji, T
    Mavko, G
    GEOPHYSICS, 2004, 69 (04) : 978 - 993
  • [27] Stochastic reservoir characterization using prestack seismic data
    Eidsvik, Jo
    Avseth, Per
    Omre, Henning
    Mukerji, Tapan
    Mavko, Gary
    Leading Edge, 2004, 69 (04): : 978 - 993
  • [28] RESERVOIR DESCRIPTION FROM SEISMIC LITHOLOGIC PARAMETER-ESTIMATION
    DEBUYL, M
    GUIDISH, T
    BELL, F
    GEOPHYSICS, 1987, 52 (06) : 827 - 828
  • [29] RESERVOIR DESCRIPTION FROM SEISMIC LITHOLOGIC PARAMETER-ESTIMATION
    DEBUYL, M
    GUIDISH, T
    BELL, F
    JOURNAL OF PETROLEUM TECHNOLOGY, 1988, 40 (04): : 475 - 482
  • [30] An improved stochastic inversion for joint estimation of seismic impedance and lithofacies
    Li, Kun
    Yin, Xingyao
    Liu, Jie
    Zong, Zhaoyun
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2019, 16 (01) : 62 - 76