Stochastic Optimization with Importance Sampling for Regularized Loss Minimization

被引:0
|
作者
Zhao, Peilin [1 ,2 ,3 ]
Zhang, Tong [2 ,3 ]
机构
[1] ASTAR, Inst Infocomm Res, Data Analyt Dept, Singapore, Singapore
[2] Rutgers State Univ, Dept Stat & Biostat, Piscataway, NJ 08854 USA
[3] Baidu Res, Big Data Lab, Beijing, Peoples R China
来源
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37 | 2015年 / 37卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Mirror Descent (prox-SMD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a rather high variance, which negatively affects the convergence of the underlying optimization procedure. In this paper we study stochastic optimization, including prox-SMD and prox-SDCA, with importance sampling, which improves the convergence rate by reducing the stochastic variance. We theoretically analyze the algorithms and empirically validate their effectiveness.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [41] Adaptive importance sampling for stochastic nonlinear systems
    Hoshiya, M
    Taniguchi, O
    Sutoh, A
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 193 - 196
  • [42] OPTIMIZING ADAPTIVE IMPORTANCE SAMPLING BY STOCHASTIC APPROXIMATION
    Kawai, Reiichiro
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (04): : A2774 - A2800
  • [43] Regularized methods via cubic model subspace minimization for nonconvex optimization
    Bellavia, Stefania
    Palitta, Davide
    Porcelli, Margherita
    Simoncini, Valeria
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (03) : 801 - 837
  • [44] Importance sampling techniques for policy optimization
    Metelli, Alberto Maria
    Papini, Matteo
    Montali, Nico
    Restelli, Marcello
    Journal of Machine Learning Research, 2020, 21
  • [45] ADAPTIVE SAMPLING STRATEGIES FOR STOCHASTIC OPTIMIZATION
    Bollapragada, Raghu
    Byrd, Richard
    Nocedal, Jorge
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (04) : 3312 - 3343
  • [46] Importance Sampling Techniques for Policy Optimization
    Metelli, Alberto Maria
    Papini, Matteo
    Montali, Nico
    Restelli, Marcello
    JOURNAL OF MACHINE LEARNING RESEARCH, 2020, 21
  • [47] On importance sampling in the problem of global optimization
    Missov, Trifon I.
    Ermakov, Sergey M.
    MONTE CARLO METHODS AND APPLICATIONS, 2009, 15 (02): : 135 - 144
  • [48] Policy Optimization via Importance Sampling
    Metelli, Alberto Maria
    Papini, Matteo
    Faccio, Francesco
    Restelli, Marcello
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [49] Optimization of Annealed Importance Sampling Hyperparameters
    Goshtasbpour, Shirin
    Perez-Cruz, Fernando
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT V, 2023, 13717 : 174 - 190
  • [50] BIODIVERSITY CONSERVATION - RESERVE OPTIMIZATION OR LOSS MINIMIZATION
    WITTING, L
    LOESCHCKE, V
    TRENDS IN ECOLOGY & EVOLUTION, 1993, 8 (11) : 417 - 417