An upwind-mixed method for advection-diffusion problems with static condensation

被引:0
|
作者
Bottasso, CL [1 ]
Causin, P [1 ]
Sacco, R [1 ]
机构
[1] Georgia Tech, D Guggenheim Sch Aerosp Engn, Atlanta, GA 30332 USA
关键词
D O I
10.1142/9789812701817_0016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we consider the dual-primal Discontinuous Petrov-Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. Convergence of the statically condensed formulation is established in a discrete H-1-norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.
引用
收藏
页码:167 / 178
页数:12
相关论文
共 50 条
  • [31] Shape Reconstruction for Unsteady Advection-Diffusion Problems by Domain Derivative Method
    Yan, Wenjing
    Su, Jian
    Jing, Feifei
    [J]. ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [32] A discontinuous residual-free bubble method for advection-diffusion problems
    Giancarlo Sangalli
    [J]. Journal of Engineering Mathematics, 2004, 49 : 149 - 162
  • [33] Modeling subgrid viscosity for advection-diffusion problems
    Brezzi, F
    Houston, P
    Marini, D
    Süli, E
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2000, 190 (13-14) : 1601 - 1610
  • [34] A note on practical bubbles for advection-diffusion problems
    Yue, XY
    [J]. CALCOLO, 2002, 39 (04) : 189 - 200
  • [35] A note on practical bubbles for advection-diffusion problems
    X. Y. Yue
    [J]. CALCOLO, 2002, 39 : 189 - 200
  • [36] Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems
    Causin, P
    Sacco, R
    Bottasso, CL
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1087 - 1114
  • [37] A third-order upwind scheme for the advection-diffusion equation using spreadsheets
    Karahan, Halil
    [J]. ADVANCES IN ENGINEERING SOFTWARE, 2007, 38 (10) : 688 - 697
  • [38] Residual distribution schemes for advection and advection-diffusion problems on quadrilateral cells
    De Palma, P.
    Pascazio, G.
    Rubino, D. T.
    Napolitano, M.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 218 (01) : 159 - 199
  • [39] Space-time geometric multigrid method for nonlinear advection-diffusion problems
    Li, Hanyu
    Wheeler, Mary F.
    [J]. APPLICABLE ANALYSIS, 2022, 101 (12) : 4194 - 4202
  • [40] A high-order discontinuous Galerkin method for unsteady advection-diffusion problems
    Borker, Raunak
    Farhat, Charbel
    Tezaur, Radek
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 332 : 520 - 537