Quantum Monte Carlo tunneling from quantum chemistry to quantum annealing

被引:25
|
作者
Mazzola, Guglielmo [1 ]
Smelyanskiy, Vadim N. [2 ]
Troyer, Matthias [1 ,3 ]
机构
[1] Swiss Fed Inst Technol, Theoret Phys, CH-8093 Zurich, Switzerland
[2] Google, Venice, CA 90291 USA
[3] Microsoft Res, Stn Q, Quantum Architectures & Computat Grp, Redmond, WA 98052 USA
基金
瑞士国家科学基金会; 欧洲研究理事会;
关键词
HYDROGEN; DYNAMICS; SYSTEMS; FLUCTUATIONS; MECHANICS; PHASE; WATER;
D O I
10.1103/PhysRevB.96.134305
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum tunneling is ubiquitous across different fields, from quantum chemical reactions and magnetic materials to quantum simulators and quantum computers. While simulating the real-time quantum dynamics of tunneling is infeasible for high-dimensional systems, quantum tunneling also shows up in quantum Monte Carlo (QMC) simulations, which aim to simulate quantum statistics with resources growing only polynomially with the system size. Here we extend the recent results obtained for quantum spin models [Phys. Rev. Lett. 117, 180402 (2016)], and we study continuous-variable models for proton transfer reactions. We demonstrate that QMC simulations efficiently recover the scaling of ground-state tunneling rates due to the existence of an instanton path, which always connects the reactant state with the product. We discuss the implications of our results in the context of quantum chemical reactions and quantum annealing, where quantum tunneling is expected to be a valuable resource for solving combinatorial optimization problems.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] MONTE-CARLO CALCULATION OF QUANTUM TUNNELING IN THE DILUTE INSTANTON LIMIT
    CROSS, MC
    [J]. PHYSICAL REVIEW A, 1986, 34 (04): : 3531 - 3534
  • [42] QUANTUM MONTE-CARLO EVALUATION OF ELECTRON-TUNNELING IN PROTEINS
    GLAUSER, WA
    BROWN, WR
    LESTER, WA
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1993, 205 : 56 - COMP
  • [43] Quantum Monte Carlo simulation of tunneling devices using Bohm trajectories
    Oriols, X
    GarciaGarcia, JJ
    Martin, F
    Sune, J
    Gonzalez, T
    Mateos, J
    Pardo, D
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1997, 204 (01): : 404 - 407
  • [44] Efficient low temperature Monte Carlo sampling using quantum annealing
    Sandt, Roland
    Spatschek, Robert
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [45] Efficient low temperature Monte Carlo sampling using quantum annealing
    Roland Sandt
    Robert Spatschek
    [J]. Scientific Reports, 13
  • [46] Global optimization: Quantum thermal annealing with path integral Monte Carlo
    Lee, YH
    Berne, BJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (01): : 86 - 95
  • [47] Excitonic complexes in quantum structures: a quantum Monte Carlo study
    Tsuchiya, T
    [J]. 8TH CONFERENCE ON OPTICS OF EXCITONS IN CONFINED SYSTEMS (OECS-8), 2004, : 603 - 607
  • [48] Quantum Monte Carlo study of entanglement in quantum spin systems
    Roscilde, T
    Verrucchi, P
    Fubini, A
    Haas, S
    Tognetti, V
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2005, 140 (3-4) : 293 - 302
  • [49] QUANTUM-CHEMISTRY BY QUANTUM MONTE-CARLO - BEYOND GROUND-STATE ENERGY CALCULATIONS
    REYNOLDS, PJ
    BARNETT, RN
    HAMMOND, BL
    GRIMES, RM
    LESTER, WA
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1986, 29 (04) : 589 - 596
  • [50] Exact diagonalization and Quantum Monte Carlo studies of quantum dots
    Güçlü, AD
    Guo, H
    [J]. HIGH PERFORMANCE COMPUTING SYSTEMS AND APPLICATIONS, 2003, : 79 - 85