Multi-label Classification via Feature-aware Implicit Label Space Encoding

被引:0
|
作者
Lin, Zijia [1 ,2 ]
Ding, Guiguang [2 ]
Hu, Mingqing [3 ]
Wang, Jianmin [2 ]
机构
[1] Tsinghua Univ, Dept Comp Sci & Technol, Beijing, Peoples R China
[2] Tsinghua Univ, Sch Software, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Comp Technol, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
LIBRARY;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
To tackle a multi-label classification problem with many classes, recently label space dimension reduction (LSDR) is proposed. It encodes the original label space to a low-dimensional latent space and uses a decoding process for recovery. In this paper, we propose a novel method termed FaIE to perform LSDR via Feature-aware Implicit label space Encoding. Unlike most previous work, the proposed FaIE makes no assumptions about the encoding process and directly learns a code matrix, i.e. the encoding result of some implicit encoding function, and a linear decoding matrix. To learn both matrices, FaIE jointly maximizes the recoverability of the original label space from the latent space, and the predictability of the latent space from the feature space, thus making itself feature-aware. FaIE can also be specified to learn an explicit encoding function, and extended with kernel tricks to handle non-linear correlations between the feature space and the latent space. Extensive experiments conducted on benchmark datasets well demonstrate its effectiveness.
引用
收藏
页码:325 / 333
页数:9
相关论文
共 50 条
  • [31] Multi-label relational classification via node and label correlation
    Zhang, Zan
    Wang, Hao
    Liu, Lin
    Li, Jiuyong
    [J]. NEUROCOMPUTING, 2018, 292 : 72 - 81
  • [32] Label Embedding for Multi-label Classification Via Dependence Maximization
    Li, Yachong
    Yang, Youlong
    [J]. NEURAL PROCESSING LETTERS, 2020, 52 (02) : 1651 - 1674
  • [33] Label Embedding for Multi-label Classification Via Dependence Maximization
    Yachong Li
    Youlong Yang
    [J]. Neural Processing Letters, 2020, 52 : 1651 - 1674
  • [34] Multi-label Classification via Label-Topic Pairs
    Chen, Gang
    Peng, Yue
    Wang, Chongjun
    [J]. WEB AND BIG DATA (APWEB-WAIM 2018), PT I, 2018, 10987 : 32 - 44
  • [35] A Multi-label Classification Algorithm Combining Feature Screening and Label Correlation
    Chen, Xinying
    Liang, Xupeng
    Yi, Weiguo
    Song, Xudong
    Wang, Di
    Zhang, Yina
    [J]. IAENG International Journal of Computer Science, 2023, 50 (04)
  • [36] Multi-label feature selection via constraint mapping space regularization
    Li, Bangna
    Zhang, Qingqing
    He, Xingshi
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (04): : 2598 - 2620
  • [37] Label Expansion for Multi-Label Classification
    Rivolli, Adriano
    Soares, Carlos
    de Carvalho, Andre C. P. L. F.
    [J]. 2018 7TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2018, : 414 - 419
  • [38] Label-Aware Document Representation via Hybrid Attention for Extreme Multi-Label Text Classification
    Huang, Xin
    Chen, Boli
    Xiao, Lin
    Yu, Jian
    Jing, Liping
    [J]. NEURAL PROCESSING LETTERS, 2022, 54 (05) : 3601 - 3617
  • [39] Label-Aware Document Representation via Hybrid Attention for Extreme Multi-Label Text Classification
    Xin Huang
    Boli Chen
    Lin Xiao
    Jian Yu
    Liping Jing
    [J]. Neural Processing Letters, 2022, 54 : 3601 - 3617
  • [40] Multi-Label Feature Selection Via Adaptive Label Correlation Estimation
    Zhang, Zan
    Zhang, Zhe
    Yao, Jialu
    Liu, Lin
    Li, Jiuyong
    Wu, Gongqing
    Wu, Xindong
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2023, 17 (09)