SYMPLECTIC AUTOMORPHISMS AND THE PICARD GROUP OF A K3 SURFACE

被引:7
|
作者
Whitcher, Ursula [1 ]
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
Algebraic geometry; Complex surfaces; K3; surfaces; Moduli spaces; ALTERNATING GROUP; FINITE-GROUPS; DEGREE-6; GEOMETRY; LATTICES;
D O I
10.1080/00927871003738949
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the symplectic action of a finite group G on a K3 surface X. The Picard group of X has a primitive sublattice determined by G. We show how to compute the rank and discriminant of this sublattice. We then investigate the classification of symplectic actions by a fixed finite group, using moduli spaces of K3 surfaces with symplectic G-action.
引用
收藏
页码:1427 / 1440
页数:14
相关论文
共 50 条