Progress toward silicon-based intersubband lasers

被引:5
|
作者
Soref, RA [1 ]
Friedman, L
Voon, LCLY
Ram-Mohan, LR
Sun, G
机构
[1] USAF, Res Lab, Sensors Directorate, Hanscom AFB, MA 01731 USA
[2] Worcester Polytech Inst, Dept Phys, Worcester, MA 01609 USA
[3] Univ Massachusetts, Dept Phys, Boston, MA 02125 USA
来源
关键词
D O I
10.1116/1.589979
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Design results are presented for the quantum parallel laser (QPL) at 1-20 mu m wavelengths and the cryogenic 4-20 mu m quantum cascade laser (QCL), For 1-2 mu m lasing, the optimum multiple quantum well heterostructures are Si quantum wells (QWs) confined by wide-gap lattice-matched semiconductor layers, especially the Si/ZnS, Si/BeSeTe, Si/gamma-Al2O3, Si/CeO2, and Si/SiOx systems (SiOx is a crystalline suboxide). The electrically pumped 300 K unipolar p-i-p. QPL consists of tightly coupled QWs exhibiting coherent transport of carriers on superlattice (SL) minibands. A good QPL candidate is the symmetrically strained Ge-n-Si-n SL grown on relaxed Si0.5Ge0.5. Local-in-k population inversion is engineered between two valence minibands. Our calculations indicate that the p-i-p QCL is feasible in Ge-Si or in lattice-matched Si0.63Ge0.33C0.04/Si The oscillator strength f(z) = 0.1 calculated for the 8 ML x 8 ML Si/ZnS zone-folded SL is insufficient for 1.1 mu m band-to-band lasing; however, the in-plane dispersion of Si QWs in Si/ZnS SLs shows valence subbands that are sufficiently nonparabolic for local-in-k lasing in QPLs and QCLs. (C) 1998 American Vacuum Society.
引用
收藏
页码:1525 / 1528
页数:4
相关论文
共 50 条
  • [1] Progress toward silicon-based intersubband lasers
    Soref, Richard A.
    Friedman, Lionel
    Lew Yan Voon, L.C.
    Ram-Mohan, L.R.
    Sun, Gregory
    [J]. Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena, 1998, 16 (03):
  • [2] Routes toward silicon-based lasers
    Pavesi, Lorenzo
    [J]. MATERIALS TODAY, 2005, 8 (01) : 18 - 25
  • [3] Toward silicon-based lasers for terahertz sources
    Lynch, Stephen A.
    Paul, Douglas J.
    Townsend, Paul
    Matmon, Guy
    Suet, Zhang
    Kelsall, Robert W.
    Ikonic, Zoran
    Harrison, Paul
    Zhang, Jing
    Norris, David J.
    Cullis, Anthony G.
    Pidgeon, Carl R.
    Murzyn, Pawel
    Murdin, Ben
    Bain, Mike
    Gamble, Harry S.
    Zhao, Ming
    Ni, Wei-Xin
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2006, 12 (06) : 1570 - 1578
  • [4] Research Progress on Silicon-based Quantum Dot Lasers
    Zhang N.
    Xie Q.
    Na Q.
    Luo D.
    Jia S.
    Wang K.
    [J]. Faguang Xuebao/Chinese Journal of Luminescence, 2023, 44 (11): : 2011 - 2026
  • [5] Toward bridging the terahertz gap with silicon-based lasers
    Borak, A
    [J]. SCIENCE, 2005, 308 (5722) : 638 - 639
  • [6] Silicon-based injection lasers using electronic intersubband transitions in the L valleys
    Driscoll, Kristina
    Paiella, Roberto
    [J]. APPLIED PHYSICS LETTERS, 2006, 89 (19)
  • [7] New progress of silicon-based lasers-silicon hybrid laser
    State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083, China
    [J]. Guangdianzi Jiguang, 2006, SUPPL. (30-33):
  • [8] Silicon-based quantum cascade lasers using electronic intersubband transitions in the L valleys
    Driscoll, Kristina
    Paiella, Roberto
    [J]. 2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 130 - +
  • [9] Silicon intersubband lasers
    Soref, RA
    Friedman, L
    Sun, G
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 1998, 23 (02) : 427 - 439
  • [10] Intersubband lasing in silicon-based multiple quantum wells
    Sun, G
    Khurgin, JB
    Friedman, L
    Soref, RA
    [J]. SEMICONDUCTOR LASERS II, 1996, 2886 : 198 - 204