Foaming of amorphous polymers and blends in supercritical CO2: Solubility versus block copolymers addition

被引:13
|
作者
Reglero, Jose Antonio [1 ]
Viot, Philippe [2 ]
Dumon, Michel [1 ]
机构
[1] ENSCBP, LCPO, IPB, CNRS, F-33607 Pessac, France
[2] ENSAM Site Talence Esplanade Arts & Metiers, Inst Mecan & Ingn I2M, Lab Mat Endommagement Fiabil LAMEFIP, F-33405 Talence, France
关键词
microcellular foaming; solubility; amorphous polymers; supercritical CO2; block copolymers; GLASS-TRANSITION TEMPERATURE; POLYSTYRENE;
D O I
10.1177/0021955X11415925
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Supercritical CO2 (scCO(2)) is used as a medium for foaming amorphous polymers. A study of the solubility of supercritical CO2 in several amorphous polymers (PS and PMMA) and blends is performed, followed by an investigation of the foaming behavior of the polymer-gas systems. Nano-structuring triblock copolymers (styrene-co-butadiene-co-methylmethacrylate SBM and methylmethacrylate-co-butylacrylate-co-methylmethacrylate MAM) were blended as additives to PS or PMMA by extrusion. The addition of these triblock copolymers results in an important weight gain ratio of gas in a wide range of temperatures (from 25 to 80 degrees C), relating this weight gain ratio to the foaming behavior of the blends (CO2 is preferentially located in the micro or nano-domains issued from the structuration of the block copolymer). Foaming is carried out in a batch one-step scCO(2) process, keeping constant the saturation pressure and depressurization rate (300 bar and 60 bar/min, respectively). Influence of saturation temperature (25-85 degrees C) on the final porous structure is shown. In spite of the influence of the terpolymer on the weight gain ratio, the structuration is believed to provide a good control of microcellular foams in PS and PMMA.
引用
下载
收藏
页码:535 / 548
页数:14
相关论文
共 50 条
  • [31] Solubility of crystalline tricosane in supercritical CO2 and CO2 + cosolvents
    Khabriev, I. Sh.
    Sabirova, L. Yu.
    Salikhov, I. Z.
    Yarullin, L. Yu.
    Khairutdinov, V. F.
    Bilalov, T. R.
    Abdulagatov, I. M.
    THERMOPHYSICS AND AEROMECHANICS, 2023, 30 (05) : 955 - 960
  • [32] Solubility of technical oils in supercritical CO2
    Dahmen, N
    Schmieder, H
    Schon, J
    Wilde, H
    HIGH PRESSURE CHEMICAL ENGINEERING, 1996, 12 : 515 - 518
  • [33] SOLUBILITY OF SOME PESTICIDES IN SUPERCRITICAL CO2
    SCHAFER, K
    BAUMANN, W
    FRESENIUS ZEITSCHRIFT FUR ANALYTISCHE CHEMIE, 1988, 332 (02): : 122 - 124
  • [34] SOLUBILITY OF TRIETHYLENE GLYCOL IN SUPERCRITICAL CO2
    YONEMOTO, T
    CHAROENSOMBUTAMON, T
    KOBAYASHI, R
    FLUID PHASE EQUILIBRIA, 1990, 55 (1-2) : 217 - 229
  • [35] Correlation of the Solubility of Solids in Supercritical CO2
    张翔
    孟莹
    蔡建国
    邓修
    华东理工大学学报(自然科学版), 2007, (04) : 450 - 455
  • [36] A NOVEL SOLUBILITY MODEL IN A SUPERCRITICAL CO2
    Qian, Yongfang
    Li, Na
    Li, Ya
    Liu, Yanping
    THERMAL SCIENCE, 2018, 22 (04): : 1853 - 1856
  • [37] Solubility of disperse dyes in supercritical CO2
    Tušek, Lidija
    Golob, Vera
    Chemische Technik (Leipzig), 1999, 51 (02): : 79 - 83
  • [38] The solubility of organic compounds in supercritical CO2
    Alvarez, GA
    Baumann, W
    Adaime, MB
    Neitzel, F
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (8-9): : 641 - 648
  • [39] SOLUBILITY OF NIFEDIPINE AND NITRENDIPINE IN SUPERCRITICAL CO2
    KNEZ, Z
    SKERGET, M
    SENCARBOZIC, P
    RIZNER, A
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1995, 40 (01): : 216 - 220
  • [40] Supercritical CO2 Foaming for Poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/Poly(lactic acid) Blends
    Kim, Youngwook
    Park, Jinkyu
    Zhang, Tao
    Jang, Yunjae
    Lee, Eunhye
    Kang, Ho -Jong
    POLYMER-KOREA, 2024, 48 (02) : 179 - 187