Vector-kernel convolutional neural networks

被引:41
|
作者
Ou, Jun [1 ]
Li, Yujian [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolutional neural networks; Parameter redundancy; Matrix kernels; Vector kernels; Parameter reduction; CLASSIFICATION;
D O I
10.1016/j.neucom.2018.11.028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computer vision, convolutional neural networks (CNNs) obtain extremely striking recognition performance. However, in many CNNs there exists a great deal of parameter redundancy because of matrix kernels. To address this problem, we propose a novel model, namely, vector-kernel convolutional neural network (VeckerNet). In a VeckerNet, each convolutional layer can only use vector kernels of either size k x 1 or 1 x k. Compared to the popular models, e.g., AlexNet, VGG, ResNet and DenseNet, the VeckerNets obtain up to 20.8% relative performance improvement with the parameter reduction by 3 to 97%. Impressively, compared to the ResNets with the same depth, e.g., 44, 56, 101 and 110 layers, the VeckerNets obtain 0.57 to 1.4% relative performance improvement with a decrease of parameters by up to more than two-thirds. The experimental results indicate that the VeckerNets can retain good recognition performance while effectively reducing network parameters. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:253 / 258
页数:6
相关论文
共 50 条
  • [1] Kernel Support Vector Machines and Convolutional Neural Networks
    Jiang, Shihao
    Hartley, Richard
    Fernando, Basura
    [J]. 2018 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2018, : 560 - 566
  • [2] Kernel Pooling for Convolutional Neural Networks
    Cui, Yin
    Zhou, Feng
    Wang, Jiang
    Liu, Xiao
    Lin, Yuanqing
    Belongie, Serge
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3049 - 3058
  • [3] Kernel Graph Convolutional Neural Networks
    Nikolentzos, Giannis
    Meladianos, Polykarpos
    Tixier, Antoine Jean-Pierre
    Skianis, Konstantinos
    Vazirgiannis, Michalis
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 22 - 32
  • [4] The Kernel Dynamics of Convolutional Neural Networks in Manifolds
    WU Wei
    JING Xiaoyuan
    DU Wencai
    [J]. Chinese Journal of Electronics, 2020, 29 (06) : 1185 - 1192
  • [5] On the regularization of convolutional kernel tensors in neural networks
    Guo, Pei-Chang
    Ye, Qiang
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (12): : 2318 - 2330
  • [6] SpreadOut: A Kernel Weight Initializer for Convolutional Neural Networks
    Hertzog, Matheus I.
    Correa, Ulisses Brisolara
    Araujo, Ricardo M.
    [J]. 2019 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2019,
  • [7] Versatile kernel reactivation for deep convolutional neural networks
    Lee, Jeong Jun
    Kim, Hyun
    [J]. ELECTRONICS LETTERS, 2022, 58 (19) : 723 - 725
  • [8] A Digitally Controlled Analog kernel for Convolutional Neural Networks
    Asghar, Malik Summair
    Junaid, Muhammad
    Kim, Hyung Won
    Arslan, Saad
    Shah, Syed Asmat Ali
    [J]. 18TH INTERNATIONAL SOC DESIGN CONFERENCE 2021 (ISOCC 2021), 2021, : 242 - 243
  • [9] Efficient Weighted Kernel Sharing Convolutional Neural Networks
    Zhou, Helong
    Chen, Yie-Tarng
    Zhang, Jie
    Fang, Wen-Hsien
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [10] Diagonal-kernel convolutional neural networks for image classification
    Li, Guoqing
    Shen, Xuzhao
    Li, Jiaojie
    Wang, Jiuyang
    [J]. DIGITAL SIGNAL PROCESSING, 2021, 108