The Kernel Dynamics of Convolutional Neural Networks in Manifolds

被引:0
|
作者
WU Wei [1 ,2 ]
JING Xiaoyuan [1 ]
DU Wencai [3 ]
机构
[1] School of Computer Science,Wuhan University
[2] Institute of Deep-sea Science and Engineering,Chinese Academy of Sciences
[3] Institute of Data Science,City University of Macau
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP183 [人工神经网络与计算];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a novel expression from manifolds to define Convolutional neural network(CNN).The layered structure is proceeded by integration in limited space continuously,with weights adjusted including value and direction in neural manifolds.Status transfer functions are proposed to simulate the kernel dynamics as a control matrix.We theoretically analyze the stability and controllability of kernel-based CNNs,and verify our findings by numerical experiments.
引用
收藏
页码:1185 / 1192
页数:8
相关论文
共 50 条
  • [1] Learning dynamics of kernel-based deep neural networks in manifolds
    Wu, Wei
    Jing, Xiaoyuan
    Du, Wencai
    Chen, Guoliang
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2021, 64 (11)
  • [2] Learning dynamics of kernel-based deep neural networks in manifolds
    Wei WU
    Xiaoyuan JING
    Wencai DU
    Guoliang CHEN
    [J]. Science China(Information Sciences), 2021, 64 (11) : 105 - 119
  • [3] Learning dynamics of kernel-based deep neural networks in manifolds
    Wei Wu
    Xiaoyuan Jing
    Wencai Du
    Guoliang Chen
    [J]. Science China Information Sciences, 2021, 64
  • [4] The Kernel Dynamics of Convolutional Neural Networks in ManifoldsInspec keywordsOther keywordsKey words
    Wu, Wei
    Jing, Xiaoyuan
    Du, Wencai
    [J]. CHINESE JOURNAL OF ELECTRONICS, 2020, 29 (06) : 1185 - 1192
  • [5] Kernel Graph Convolutional Neural Networks
    Nikolentzos, Giannis
    Meladianos, Polykarpos
    Tixier, Antoine Jean-Pierre
    Skianis, Konstantinos
    Vazirgiannis, Michalis
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT I, 2018, 11139 : 22 - 32
  • [6] Kernel Pooling for Convolutional Neural Networks
    Cui, Yin
    Zhou, Feng
    Wang, Jiang
    Liu, Xiao
    Lin, Yuanqing
    Belongie, Serge
    [J]. 30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 3049 - 3058
  • [7] Geodesic Convolutional Neural Networks on Riemannian Manifolds
    Masci, Jonathan
    Boscaini, Davide
    Bronstein, Michael M.
    Vandergheynst, Pierre
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 832 - 840
  • [8] Vector-kernel convolutional neural networks
    Ou, Jun
    Li, Yujian
    [J]. NEUROCOMPUTING, 2019, 330 : 253 - 258
  • [9] On the regularization of convolutional kernel tensors in neural networks
    Guo, Pei-Chang
    Ye, Qiang
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (12): : 2318 - 2330
  • [10] Convolutional Neural Networks on Manifolds: From Graphs and Back
    Wang, Zhiyang
    Ruiz, Luana
    Ribeiro, Alejandro
    [J]. 2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 356 - 360