We prove results on moments of L-functions in the function field setting, where the moment averages are taken over primitive characters of modulus R, where R is a polynomial in F-q[T]. We consider the behaviour as deg R -> infinity and the cardinality of the finite field is fixed. Specifically, we obtain an exact formula for the second moment provided that R is square-full, an asymptotic formula for the second moment for any R, and an asymptotic formula for the fourth moment for any R. The fourth moment result is a function field analogue of Soundararajan's result in the number field setting that improved upon a previous result by Heath-Brown. Both the second and fourth moment results extend work done by Tamam in the function field setting who focused on the case where R is prime. As a prerequisite for the fourth moment result, we obtain, for the special case of the divisor function, the function field analogue of Shiu's generalised Brun-Titchmarsh theorem.