Deterioration of an industrial reinforced concrete structure exposed to high temperatures and dry-wet cycles

被引:36
|
作者
Liu, Xiguang [1 ]
Ma, Erhao [2 ]
Liu, Jun [2 ]
Zhang, Binqiang [2 ]
Niu, Ditao [1 ]
Wang, Yan [2 ]
机构
[1] Xian Univ Architecture & Technol, Coll Civil Engn, State Key Lab Green Bldg Western China, 13 Yanta Rd, Xian 710055, Peoples R China
[2] Xian Univ Architecture & Technol, Coll Civil Engn, 13 Yanta Rd, Xian 710055, Peoples R China
基金
中国国家自然科学基金;
关键词
Reinforced concrete; Carbonation; High temperatures; Dry-wet cycles; pH; CEMENT; CARBONATION; PERFORMANCE; DURABILITY; CA(OH)(2); CO2;
D O I
10.1016/j.engfailanal.2022.106150
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper presents the results of an in-situ test and experimental study on a reinforced concrete wet quenching tower that had been exposed to high temperature and dry-wet cycles for 34 years. Fourteen concrete cylinder samples were drilled along the height. The variations in the carbonation depth, compressive strength, pH, phase compositions, substance contents and morphologies of concrete along the height and depth of the tower were tested. The carbonation depth of concrete at the top of the tower was 2.3 times greater than the bottom, and the compressive strength of concrete at the top was only about 30% of the bottom. Variations of pH with the content of CaCO3 in different depths have been quantified. The pH at different depths of concrete in the severe dry-wet cycle zone fluctuated around 9.0, the content of CaCO3 was around 8%. Calcium carbonate coexisted with gypsum in the transition zone of carbonated concrete. A modified stochastic carbonation depth model is proposed for concrete exposed to high temperatures with dry-wet cycles and was in acceptable agreement with natural carbonation test results.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Experimental study on the internal relative humidity in concrete under dry-wet cycles
    Zhang, J. (junz@tsinghua.edu.cn), 1600, Tongji University (16):
  • [32] Sulfate Resistance Mechanism of Aeolian Sand Concrete Under Dry-Wet Cycles
    Dong R.
    Shen X.
    Xue H.
    Liu Q.
    Cailiao Daobao/Materials Reports, 2020, 34 (24): : 24040 - 24044
  • [33] The leaching-deterioration properties and leaching mechanism of cement mortar under dry-wet cycles
    Yang, Xiaolong
    Feng, Yumeng
    Rong, Hongliu
    Liang, Junlin
    Zhang, Guoming
    Huang, Ying
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 400
  • [34] Deterioration Effect of Sandstone Tensile Strength and Its Mesoscopic Mechanism under Dry-wet Cycles
    Yang, Jianfei
    Zhang, Guodong
    Deng, Lixu
    Zhang, Yaxin
    Li, Zheng
    Ye, Yicheng
    PERIODICA POLYTECHNICA-CIVIL ENGINEERING, 2023, 67 (03): : 775 - 784
  • [35] Multiscale study on the microstructural evolution and macromechanical deterioration of expansive soil under dry-wet cycles
    Zhou, Zihao
    Bai, Yang
    Wu, Yuntao
    Chen, Yiqian
    Guo, Zhuang
    Cheng, Weikang
    JOURNAL OF MECHANICS, 2022, 38 : 610 - 620
  • [36] Durability of concrete subjected to dry-wet cycles in various types of salt lake brines
    Ma, Haiyan
    Gong, Wei
    Yu, Hongfa
    Sun, Wei
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 193 : 286 - 294
  • [37] Durability of seawater coral aggregate concrete under seawater immersion and dry-wet cycles
    Zhang, Bai
    Zhu, Hong
    JOURNAL OF BUILDING ENGINEERING, 2023, 66
  • [38] Chloride Transport Performance of Waste Fiber Recycled Concrete under Dry-Wet Cycles
    Kang T.
    Liu Y.
    Zhou J.
    Wang F.
    Zhang Y.
    Jianzhu Cailiao Xuebao/Journal of Building Materials, 2022, 25 (04): : 389 - 394
  • [39] Experimental Study of Fatigue Damage Strength of Concrete Lining under Dry-Wet Cycles
    Zhang, Yan
    Dai, Jun
    Zheng, Xuanrong
    Zhang, Xinyan
    Li, Ning
    3RD ANNUAL INTERNATIONAL WORKSHOP ON MATERIALS SCIENCE AND ENGINEERING (IWMSE2017), 2017, 250
  • [40] Numerical simulation of chloride ion migration of cement concrete under dry-wet cycles
    Guan, B.W.
    Yang, T.
    Yang, X.K.
    Xiong, R.
    Wang, Y.W.
    Sheng, Y.P.
    Materials Research Innovations, 2015, 19 : 139 - 143