Numerical solution to the time-dependent Maxwell equations in axisymmetric singular domains:: the singular complement method

被引:36
|
作者
Assous, F
Ciarlet, P
Labrunie, S
Segré, J
机构
[1] CEA, DAM Ile France, Dept Phys Theor & Appl, F-91680 Bruyeres Le Chatel, France
[2] ENSTA, F-75739 Paris 15, France
[3] CNRS, UMR 2706, F-75739 Paris 15, France
[4] Univ Nancy 1, IECN, F-54506 Vandoeuvre Les Nancy, France
关键词
Maxwell equations; axisymmetry; singularities; conforming finite element method;
D O I
10.1016/S0021-9991(03)00309-7
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we present a method to solve numerically the axisymmetric time-dependent Maxwell equations in a singular domain. In [Math. Methods Appl. Sci. 25 (2002) 49; Math. Methods Appl. Sci. 26 (2003) 861], the mathematical tools and an in-depth study of the problems posed in the meridian half-plane were exposed. The numerical method and experiments based on this theory are now described here. It is also the generalization to axisymmetric problems of the Singular Complement Method that we developed to solve Maxwell equations in 2D singular domains (see [C. R. Acad. Sci, Paris. t. 330 (2000) 391]). It is based on a splitting of the space of solutions in a regular subspace, and a singular one, derived from the singular solutions of the Laplace problem. Numerical examples are finally given, to illustrate our purpose. In particular, they show how the Singular Compliment Method captures the singular part of the solution. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:147 / 176
页数:30
相关论文
共 50 条
  • [21] Solving Numerically the Static Maxwell Equations in an Axisymmetric Singular Geometry
    Assous, Franck
    Raichik, Irina
    Mathematical Modelling and Analysis, 2015, 20 (01) : 9 - 29
  • [22] The Fourier Singular Complement Method for the Poisson problem. Part II: axisymmetric domains
    Ciarlet, P
    Jung, B
    Kaddouri, S
    Labrunie, S
    Zou, J
    NUMERISCHE MATHEMATIK, 2006, 102 (04) : 583 - 610
  • [23] An elementary solution of the Maxwell equations for a time-dependent source
    Rivera, R
    Villarroel, D
    EUROPEAN JOURNAL OF PHYSICS, 2002, 23 (06) : 593 - 603
  • [24] The Fourier Singular Complement Method for the Poisson problem. Part II: axisymmetric domains
    P. Ciarlet
    B. Jung
    S. Kaddouri
    S. Labrunie
    J. Zou
    Numerische Mathematik, 2006, 102 : 583 - 610
  • [25] On the solution of Maxwell's equations in axisymmetric domains with edges
    Nkemzi, B
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2005, 85 (08): : 571 - 592
  • [26] Characterization of the singular part of the solution of steady-state Maxwell's equations in an axisymmetric domain
    Assous, F
    Ciarlet, P
    Labrunie, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (09): : 767 - 772
  • [27] Numerical solution of singular Sylvester equations
    Chu, Eric K. -W.
    Hou, Liangshao
    Szyld, Daniel B.
    Zhou, Jieyong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 436
  • [28] A reliable iterative method for solving the time-dependent singular Emden-Fowler equations
    Wazwaz, Abdul-Majid
    OPEN ENGINEERING, 2013, 3 (01): : 99 - 105
  • [29] NUMERICAL SOLUTION OF SINGULAR INTEGRAL EQUATIONS
    NOBLE, B
    SIAM REVIEW, 1966, 8 (04) : 573 - &
  • [30] Numerical solution of singular Lyapunov equations
    Chu, Eric K. -W.
    Szyld, Daniel B.
    Zhou, Jieyong
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2021, 28 (05)