Ore-type degree condition of supereulerian digraphs

被引:14
|
作者
Hong, Yanmei [1 ]
Liu, Qinghai [2 ]
Lai, Hong-Jian [3 ]
机构
[1] Fuzhou Univ, Coll Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
[2] Fuzhou Univ, Ctr Discrete Math, Fuzhou 350002, Fujian, Peoples R China
[3] W Virginia Univ, Dept Math, Morgantown, WV 26506 USA
关键词
Supereulerian; Ore's condition; GRAPHS;
D O I
10.1016/j.disc.2016.03.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A digraph D is supereulerian if D has a spanning directed eulerian subdigraph. Hong et al. proved that delta(+)(D) + delta(-)(D) >= vertical bar V(D)vertical bar - 4 implies D is supereulerian except some well-characterized digraph classes if the minimum degree is large enough. In this paper, we characterize the digraphs D which are not supereulerian under the condition d(D)(+)(u) + d(D)(-) (v) >= vertical bar V(D)vertical bar - 4 for any pair of vertices u and v with uv is not an element of A(D) without the minimum degree constraint. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:2042 / 2050
页数:9
相关论文
共 50 条
  • [21] Supereulerian digraphs
    Hong, Yanmei
    Lai, Hong-Jian
    Liu, Qinghai
    [J]. DISCRETE MATHEMATICS, 2014, 330 : 87 - 95
  • [22] A characterization of panconnected graphs satisfying a local ore-type condition
    Asratian, AS
    Haggkvist, R
    Sarkisian, GV
    [J]. JOURNAL OF GRAPH THEORY, 1996, 22 (02) : 95 - 103
  • [23] Some panconnected and pancyclic properties of graphs with a local ore-type condition
    Asratian, AS
    Sarkisian, GV
    [J]. GRAPHS AND COMBINATORICS, 1996, 12 (03) : 209 - 219
  • [24] Ore-type degree conditions for disjoint path covers in simple graphs
    Lim, Hyeong-Seok
    Kim, Hee-Chul
    Park, Jung-Heum
    [J]. DISCRETE MATHEMATICS, 2016, 339 (02) : 770 - 779
  • [25] Supereulerian Extended Digraphs
    Changchang DONG
    Juan LIU
    [J]. Journal of Mathematical Research with Applications, 2018, 38 (02) : 111 - 120
  • [26] Supereulerian bipartite digraphs
    Zhang, Xindong
    Liu, Juan
    Wang, Lan
    Lai, Hong-Jian
    [J]. JOURNAL OF GRAPH THEORY, 2018, 89 (01) : 64 - 75
  • [27] An Ore-type condition for large k-factor and disjoint perfect matchings
    Lu, Hongliang
    Ning, Bo
    [J]. JOURNAL OF GRAPH THEORY, 2020, 94 (03) : 307 - 319
  • [28] On 2-edge-connected [a, b]-factors of graphs with Ore-type condition
    Matsuda, H
    [J]. DISCRETE MATHEMATICS, 2005, 296 (2-3) : 225 - 234
  • [29] A Degree Condition for Hamiltonian Digraphs
    Wang, S. Y.
    Yuan, J.
    [J]. SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2010, 34 (03) : 523 - 536
  • [30] Supereulerian digraphs with given diameter
    Dong, Changchang
    Liu, Juan
    Zhang, Xindong
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 329 : 5 - 13