Non-Hermitian Maryland model

被引:16
|
作者
Longhi, Stefano [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Fis, Piazza L da Vinci 32, I-20133 Milan, Italy
[2] IFISC UIB CSIC, Inst Fis Interdisciplinar & Sistemas Complejos, Palma De Mallorca, Spain
关键词
LOCALIZATION; OPERATORS;
D O I
10.1103/PhysRevB.103.224206
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Non-Hermitian (NH) systems with aperiodic order display phase transitions that are beyond the paradigm of Hermitian physics. This motivates the search for exactly solvable models, where localization-delocalization phase transitions, mobility edges in complex plane, and their topological nature can be unraveled. Here, we present an exactly solvable model of quasicrystal, which is a nonpertrurbative NH extension of a famous integrable model of quantum chaos proposed by Grempel et al. [Phys. Rev. Lett. 49, 833 (1982)] and dubbed the Maryland model. Contrary to the Hermitian Maryland model, its NH extension shows a richer scenario, with a localization-delocalization phase transition via topological mobility edges in complex energy plane.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Interactions of Hermitian and non-Hermitian Hamiltonians
    Bender, Carl M.
    Jones, Hugh F.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (24)
  • [22] Non-Hermitian physics
    Ashida, Yuto
    Gong, Zongping
    Ueda, Masahito
    ADVANCES IN PHYSICS, 2020, 69 (03) : 249 - 435
  • [23] Non-Hermitian Optomechanics
    Primo, Andre G.
    Carvalho, Natalia C.
    Kersul, Cane M.
    Wiederhecker, Gustavo S.
    Frateschi, Newton C.
    Alegre, Thiago P. M.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [24] Ring-frustrated non-Hermitian XY model
    Bi, Shihao
    He, Yan
    Li, Peng
    PHYSICS LETTERS A, 2021, 395 (395)
  • [25] On the spectrum of the non-Hermitian phase-difference model
    Bogoliubov, NM
    Nassar, T
    PHYSICS LETTERS A, 1997, 234 (05) : 345 - 350
  • [26] Non-Hermitian quantum annealing in the ferromagnetic Ising model
    Nesterov, Alexander I.
    Beas Zepeda, Juan Carlos
    Berman, Gennady P.
    PHYSICAL REVIEW A, 2013, 87 (04):
  • [27] Exact Solution of a Non-Hermitian Generalized Rabi Model
    曹雨松
    曹俊鹏
    Chinese Physics Letters, 2021, 38 (08) : 12 - 15
  • [28] Distribution of eigenvalues of non-Hermitian random XXZ model
    Chihara, K
    Kusakabe, K
    PROGRESS OF THEORETICAL PHYSICS SUPPLEMENT, 2002, (145): : 225 - 228
  • [29] Non-Hermitian Hubbard model without the sign problem
    Hayata, Tomoya
    Yamamoto, Arata
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [30] On the remarkable spectrum of a non-Hermitian random matrix model
    Holz, DE
    Orland, H
    Zee, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (12): : 3385 - 3400