Hybrid surface- and voxel-based registration for MR-PET brain fusion

被引:0
|
作者
Lee, H [1 ]
Hong, H [1 ]
机构
[1] Seoul Natl Univ, Sch Elect Engn & Comp Sci, Seoul 151742, South Korea
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose a novel technique of registration using hybrid approach for MR-PET brain image fusion. Hybrid approach uses merits of surface- and voxel-based registration. Thus, our method measures similarities using voxel intensities in MR images corresponding to the feature points of the brain in PET images. Proposed method selects the brain threshold using histogram accumulation ratio in PET images. And then, we automatically segment the brain using the inverse region growing with pre-calculated threshold and extract the feature points of the brain using sharpening filter in PET images. In order to find the optimal location for registration, we evaluate the Hybrid-based Cross-Correlation using the voxel intensities in MR images corresponding to the feature points in PET images. In our experiments, we evaluate our method using software phantom and clinical datasets in the aspect of visual inspection, accuracy, robustness, and computation time. Experimental results show that our method is dramatically faster than the voxel-based registration and more accurate than the surface-based registration. In particular, our method can robustly align two datasets with large geometrical displacement and noise at optimal location.
引用
收藏
页码:930 / 937
页数:8
相关论文
共 50 条
  • [1] Surface curvature-based MR-PET image registration and hybrid hippocampus modeling
    Choi, YJ
    Kim, MJ
    Park, JY
    Park, JY
    Yun, HJ
    Hong, SB
    Kim, MH
    [J]. ON THE CONVERGENCE OF BIO-INFORMATION-, ENVIRONMENTAL-, ENERGY-, SPACE- AND NANO-TECHNOLOGIES, PTS 1 AND 2, 2005, 277-279 : 212 - 218
  • [2] From simultaneous to synergistic MR-PET brain imaging: A review of hybrid MR-PET imaging methodologies
    Chen, Zhaolin
    Jamadar, Sharna D.
    Li, Shenpeng
    Sforazzini, Francesco
    Baran, Jakub
    Ferris, Nicholas
    Shah, Nadim Jon
    Egan, Gary F.
    [J]. HUMAN BRAIN MAPPING, 2018, 39 (12) : 5126 - 5144
  • [3] Automatic MR-PET registration algorithm
    Phillips, PJ
    Vardi, Y
    Dunn, SM
    Buchsbaum, MS
    Spiegel-Cohen, JL
    [J]. INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 1998, 9 (01) : 46 - 50
  • [4] Hybrid MR-PET in Neuroimaging
    S. Bisdas
    C. lá Fougere
    U. Ernemann
    [J]. Clinical Neuroradiology, 2015, 25 : 275 - 281
  • [5] Hybrid MR-PET in Neuroimaging
    Bisdas, S.
    la Fougere, C.
    Ernemann, U.
    [J]. CLINICAL NEURORADIOLOGY, 2015, 25 : 275 - 281
  • [6] A detector insert based on continuous scintillators for hybrid MR-PET imaging of the human brain
    Rato Mendes, P.
    Cuerdo, R.
    Sarasola, I.
    Garcia de Acilu, P.
    Navarrete, J.
    Vela, O.
    Oller, J. C.
    Cela, J. M.
    Nunez, L.
    Pastrana, M.
    Romero, L.
    Willmott, C.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2013, 702 : 80 - 82
  • [7] Human brain MR-PET image registration using mathematics morphological tools
    Yang, Hu
    Ma, Bin-rong
    Ren, Hai-ping
    Shen, Jin-hui
    [J]. Chinese Journal of Biomedical Engineering, 2002, 21 (05) : 430 - 436
  • [8] ITERATIVE PRINCIPAL AXES REGISTRATION METHOD FOR ANALYSIS OF MR-PET BRAIN IMAGES
    DHAWAN, AP
    ARATA, LK
    LEVY, AV
    MANTIL, J
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1995, 42 (11) : 1079 - 1087
  • [9] Template based attenuation correction for brain MR-PET scanners
    Kops, E. Rota
    Herzog, H.
    [J]. JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2009, 29 : S337 - S337
  • [10] MR-PET head motion correction based on co-registration of multicontrast MR images
    Chen, Zhaolin
    Sforazzini, Francesco
    Baran, Jakub
    Close, Thomas
    Shah, Nadim Jon
    Egan, Gary F.
    [J]. HUMAN BRAIN MAPPING, 2021, 42 (13) : 4081 - 4091