Aquifer parameter estimation using an incremental area method

被引:10
|
作者
Avci, Cem B. [1 ]
Sahin, A. Ufuk [1 ]
Ciftci, Emin [1 ]
机构
[1] Bogazici Univ, Dept Civil Engn, TR-34340 Istanbul, Turkey
关键词
groundwater; pumping test; parameter estimation; incremental area method; STEADY-STATE CONDITIONS; GROUNDWATER-FLOW; PUMPING TESTS; HETEROGENEOUS AQUIFERS; HYDRAULIC TOMOGRAPHY; NONUNIFORM AQUIFERS; UNCONFINED AQUIFER; JACOBS METHOD; WATER TABLE; DRAWDOWN;
D O I
10.1002/hyp.8029
中图分类号
TV21 [水资源调查与水利规划];
学科分类号
081501 ;
摘要
Theoretical well functions have been derived over the years to predict ground water level behaviour in aquifer systems under stress owing to groundwater extraction. The drawdown data collected during pump tests are typically analysed using graphical curve-matching procedures to estimate aquifer parameters based on these well functions. Difficulty in aquifer characteristic identification and parameter estimation may arise when the field data do not perfectly match the drawdown curves obtained from the well functions. The present study provides a new method for the interpretation of aquifer pump tests which supplements the existing curve-matching procedures in case ideal conditions do not exist; the proposed method provides a greater degree of flexibility in the data analysis for diagnostic tool purposes. The method, referred to as the Incremental Area Method (IAM) is based on integrating the logarithmic-based drawdown curves within a discrete time and matching the results with a corresponding time integral of the Theis (1935) Well Function which governs ideal confined aquifers. The application of the proposed method to synthetically generated data and field data showed that IAM represents a viable method which yields information on potential non-idealness of the aquifer and provides aquifer parameter estimates thus potentially overcoming drawdown data curve-matching difficulties. Copyright. (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:2584 / 2596
页数:13
相关论文
共 50 条
  • [1] Parameter estimation for a karst aquifer with unknown thickness using the genetic algorithm method
    Lu, Chengpeng
    Shu, Longcang
    Chen, Xunhong
    Cheng, Cheng
    [J]. ENVIRONMENTAL EARTH SCIENCES, 2011, 63 (04) : 797 - 807
  • [2] Parameter estimation for a karst aquifer with unknown thickness using the genetic algorithm method
    Chengpeng Lu
    Longcang Shu
    Xunhong Chen
    Cheng Cheng
    [J]. Environmental Earth Sciences, 2011, 63 : 797 - 807
  • [3] A new method for aquifer system identification and parameter estimation
    Avci, Cem B.
    Sahin, A. Ufuk
    Ciftci, Emin
    [J]. HYDROLOGICAL PROCESSES, 2013, 27 (17) : 2485 - 2497
  • [4] Simple method for confined-aquifer parameter estimation
    Singh, SK
    [J]. JOURNAL OF IRRIGATION AND DRAINAGE ENGINEERING, 2000, 126 (06) : 404 - 407
  • [5] AQUIFER PARAMETER-ESTIMATION USING KALMAN FILTERS
    CHANDER, S
    KAPOOR, PN
    GOYAL, SK
    [J]. JOURNAL OF THE IRRIGATION AND DRAINAGE DIVISION-ASCE, 1981, 107 (01): : 25 - 33
  • [6] A comparative study in aquifer parameter estimation using MFree point collocation method with evolutionary algorithms
    Thomas, Alice
    Eldho, T., I
    Rastogi, A. K.
    Majumder, Partha
    [J]. JOURNAL OF HYDROINFORMATICS, 2019, 21 (03) : 455 - 473
  • [7] Aquifer parameter estimation using genetic algorithms and neural networks
    Lingireddy, S
    [J]. CIVIL ENGINEERING AND ENVIRONMENTAL SYSTEMS, 1998, 15 (02) : 125 - 144
  • [8] A NON-LINEAR OPTIMIZATION METHOD FOR AQUIFER PARAMETER-ESTIMATION
    KASHYAP, D
    CHANDRA, S
    [J]. JOURNAL OF HYDROLOGY, 1982, 57 (1-2) : 163 - 173
  • [9] Acoustic Model Parameter Estimation Using Distributed Incremental Adaptive Networks
    Taheri, Sayed Mostafa
    Nosrati, Hamed
    [J]. 2015 IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATION (ISCC), 2015, : 471 - 476
  • [10] Optimized Method for Speed Estimation Using Incremental Encoder
    Anuchin, Alecksey
    Astakhova, Valentina
    Shpak, Dmitry
    Zharkov, Alexandr
    Briz, Fernando
    [J]. 2017 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS (EE), 2017,