Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells

被引:27
|
作者
Ali, Syed Talat [1 ]
Li, Qingfeng [2 ]
Pan, Chao [2 ]
Jensen, Jens Oluf [2 ]
Nielsen, Lars Pleth [3 ]
Moller, Per [1 ]
机构
[1] Tech Univ Denmark, Dept Mech Engn, DK-2800 Lyngby, Denmark
[2] Tech Univ Denmark, Dept Chem, DK-2800 Lyngby, Denmark
[3] Danish Technol Inst, DK-8000 Aarhus C, Denmark
关键词
Chloride impurities; Acid-doped polybenzimidazole; Proton exchange membrane fuel cell; Durability; Catalyst; PHOSPHORIC-ACID; PLATINUM DISSOLUTION; PEMFC PERFORMANCE; OXYGEN REDUCTION; CARBON; PBI; CATALYSTS; CATHODE; SURFACE; SULFUR;
D O I
10.1016/j.ijhydene.2010.10.076
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of chloride as an air impurity and as a catalyst contaminant on the performance and durability of polybenzimidazole (PBI)-based high temperature proton exchange membrane fuel cell (HT-PEMFC) was studied. The ion chromatographic analysis reveals the existence of chloride contaminations in the Pt/C catalysts. Linear sweep voltammetry was employed to study the redox behavior of platinum in 85% phosphoric acid containing chloride ions, showing increase in oxidation and decrease in reduction current densities during the potential scans at room temperature. The potential scans at high temperatures in 85% phosphoric acid containing chloride ions showed both increase in oxidation and reduction current densities. The fuel cell performance, i.e. the current density at a constant voltage of 0.4 V and 0.5 V was found to be degraded as soon as HCl was introduced in the air humidifier. The performance loss was recovered when switching from the HCl solution back to pure water in the air humidifier. Under an accelerated aging performance test conducted through potential cycling between 0.9 V and 1.2 V, the PBI-based fuel cell initially containing 0.5 NaCl mg cm(-2) on the cathode catalyst layer exhibited a drastic degradation in the performance as compared to the chloride free MEAs. The mechanisms of the chloride effect on the fuel cell performance and durability were further discussed. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1628 / 1636
页数:9
相关论文
共 50 条
  • [21] Doping phosphoric acid in polybenzimidazole membranes for high temperature proton exchange membrane fuel cells
    He, Ronghuan
    Li, Qingfeng
    Jensen, Jens Oluf
    Bjerrum, Niels J.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2007, 45 (14) : 2989 - 2997
  • [22] An antioxidant polybenzimidazole with naphthalene group for high-temperature proton exchange membrane fuel cells
    Ju, Qing
    Chao, Ge
    Wang, Yixin
    Lv, Zixin
    Geng, Kang
    Li, Nanwen
    JOURNAL OF MEMBRANE SCIENCE, 2023, 686
  • [23] Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells
    Kang, Yu
    Zou, Jing
    Sun, Zhaonan
    Wang, Fanghui
    Zhu, Hong
    Han, Kefei
    Yang, Wensheng
    Song, Huaihe
    Meng, Qinghan
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (15) : 6494 - 6502
  • [24] Modeling of high temperature proton exchange membrane fuel cells with novel sulfonated polybenzimidazole membranes
    Yin, Yan
    Wang, Jiabin
    Yang, Xiaole
    Du, Qing
    Fang, Jianhua
    Jiao, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (25) : 13671 - 13680
  • [25] Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped Polybenzimidazole Membranes
    Cleemann, L. N.
    Buazar, F.
    Li, Q.
    Jensen, J. O.
    Pan, C.
    Steenberg, T.
    Dai, S.
    Bjerrum, N. J.
    FUEL CELLS, 2013, 13 (05) : 822 - 831
  • [26] Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells
    Liao, J. H.
    Li, Q. F.
    Rudbeck, H. C.
    Jensen, J. O.
    Chromik, A.
    Bjerrum, N. J.
    Kerres, J.
    Xing, W.
    FUEL CELLS, 2011, 11 (06) : 745 - 755
  • [27] Polybenzimidazole-based polymers of intrinsic microporosity membrane for high-temperature proton conduction
    Luo, Huihui
    Yang, Fan
    Li, Chao
    Zhong, Yifei
    Cheng, Cheng
    Wang, Shaolei
    Jin, Shangbin
    CHEMICAL ENGINEERING JOURNAL, 2023, 476
  • [28] Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique
    Su, Huaneng
    Pasupathi, Sivakumar
    Bladergroen, Bernard Jan
    Linkov, Vladimir
    Pollet, Bruno G.
    JOURNAL OF POWER SOURCES, 2013, 242 : 510 - 519
  • [29] Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress
    David Aili
    Dirk Henkensmeier
    Santiago Martin
    Bhupendra Singh
    Yang Hu
    Jens Oluf Jensen
    Lars N. Cleemann
    Qingfeng Li
    Electrochemical Energy Reviews, 2020, 3 : 793 - 845
  • [30] A semi-flexible polybenzimidazole with enhanced comprehensive performance for high-temperature proton exchange membrane fuel cells
    You, Yamei
    Deng, Xinyang
    Liu, Qian
    Hou, Yanjun
    Miao, Shoulei
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2024, 78 : 879 - 888