Estimating Effective Roughness Parameters of the L-MEB Model for Soil Moisture Retrieval Using Passive Microwave Observations From SMAPVEX12

被引:17
|
作者
Martens, Brecht [1 ]
Lievens, Hans [1 ]
Colliander, Andreas [2 ]
Jackson, Thomas J. [3 ]
Verhoest, Niko E. C. [1 ]
机构
[1] Univ Ghent, Lab Hydrol & Water Management, B-9000 Ghent, Belgium
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] ARS, Hydrol & Remote Sensing Lab, USDA, Beltsville, MD 20705 USA
来源
基金
美国国家航空航天局;
关键词
Passive Active L-band Sensor (PALS); passive microwave remote sensing; roughness modeling; soil moisture; L-BAND; DISCHARGE PREDICTIONS; OCEAN SALINITY; SIMPLEX-METHOD; CALIBRATION; EMISSION; FIELD; IMPROVEMENT; VALIDATION; TEXTURE;
D O I
10.1109/TGRS.2015.2390259
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Despite the continuing efforts to improve existing soil moisture retrieval algorithms, the ability to estimate soil moisture from passive microwave observations is still hampered by problems in accurately modeling the observed microwave signal. This paper focuses on the estimation of effective surface roughness parameters of the L-band Microwave Emission from the Biosphere (L-MEB) model in order to improve soil moisture retrievals from passive microwave observations. Data from the SMAP Validation Experiment 2012 conducted in Canada are used to develop and validate a simple model for the estimation of effective roughness parameters. Results show that the L-MEB roughness parameters can be empirically related to the observed brightness temperatures and the leaf area index of the vegetation. These results indicate that the roughness parameters are compensating for both roughness and vegetation effects. It is also shown, using a leave-one-out cross validation, that the model is able to accurately estimate the roughness parameters necessary for the inversion of the L-MEB model. In order to demonstrate the usefulness of the roughness parameterization, the performance of the model is compared to more traditional roughness formulations. Results indicate that the soil moisture retrieval error can be reduced to 0.054 m(3)/m(3) if the roughness formulation proposed in this study is implemented in the soil moisture retrieval algorithm.
引用
收藏
页码:4091 / 4103
页数:13
相关论文
共 50 条
  • [31] Analysis of a Least-Squares Soil Moisture Retrieval Algorithm from L-band Passive Observations
    Piles, Maria
    Vall-Ilossera, Merce
    Camps, Adriano
    Talone, Marco
    Monerris, Alessandra
    [J]. REMOTE SENSING, 2010, 2 (01) : 352 - 374
  • [32] Use of a discrete electromagnetic model for simulating Aquarius L-band active/passive observations and soil moisture retrieval
    Wang, Qiang
    van der Velde, Rogier
    Su, Zhongbo
    [J]. REMOTE SENSING OF ENVIRONMENT, 2018, 205 : 434 - 452
  • [33] Towards a better monitoring of soil moisture using a combination of estimates from passive microwave and thermal observations
    Vega-Martinez, Zulamet
    Temimi, Marouane
    Anderson, Martha C.
    Hain, Christopher
    Krakauer, Nir
    Ribin, Robert
    Khanbilvardi, Reza
    [J]. REMOTE SENSING AND HYDROLOGY, 2012, 352 : 42 - +
  • [34] Estimating Vegetation Water Content and Soil Surface Roughness Using Physical Models of L-Band Radar Scattering for Soil Moisture Retrieval
    Kim, Seung-Bum
    Huang, Huanting
    Liao, Tien-Hao
    Colliander, Andreas
    [J]. REMOTE SENSING, 2018, 10 (04):
  • [35] Passive L-band microwave soil moisture retrieval error arising from topography in otherwise uniform scenes
    Sandells, Melody J.
    Davenport, Ian. J.
    Gurney, Robert. J.
    [J]. ADVANCES IN WATER RESOURCES, 2008, 31 (11) : 1433 - 1443
  • [36] Retrieval of soil moisture from passive and active L/S band sensor (PALS) observations during the Soil Moisture Experiment in 2002 (SMEX02)
    Narayan, U
    Lakshmi, V
    Njoku, EG
    [J]. REMOTE SENSING OF ENVIRONMENT, 2004, 92 (04) : 483 - 496
  • [37] Mapping soil moisture across the Tibetan Plateau plains using Aquarius active and passive L-band microwave observations
    Wang, Qiang
    van der Velde, Rogier
    Ferrazzoli, Paolo
    Chen, Xuelong
    Bai, Xiaojing
    Su, Zhongbo
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 77 : 108 - 118
  • [38] TOWARDS MULTI-FREQUENCY SOIL MOISTURE RETRIEVAL USING P-AND L-BAND PASSIVE MICROWAVE SENSING TECHNOLOGY
    Ye, Nan
    Wu, Xiaoling
    Walker, Jeffrey
    Boopathi, Nithyapriya
    Jackson, Thomas J.
    Kerr, Yann
    Kim, Edward
    McGrath, Andrew
    Yeo, In-Young
    Moghaddam, Mahta
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 3707 - 3710
  • [39] Estimation of Vegetation Parameters of Water Cloud Model for Global Soil Moisture Retrieval Using Time-Series L-Band Aquarius Observations
    Liu, Chenzhou
    Shi, Jiancheng
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2016, 9 (12) : 5621 - 5633
  • [40] Monitoring Agricultural Risk in Canada Using L-Band Passive Microwave Soil Moisture from SMOS
    Champagne, Catherine
    Davidson, Andrew
    Cherneski, Patrick
    L'Heureux, Jessika
    Hadwen, Trevor
    [J]. JOURNAL OF HYDROMETEOROLOGY, 2015, 16 (01) : 5 - 18