A Steam-Plasma Igniter for Aluminum Powder Combustion

被引:3
|
作者
Lee, Sanghyup [1 ]
Noh, Kwanyoung [1 ]
Lim, Jihwan [1 ]
Yoon, Woongsup [1 ]
机构
[1] Yonsei Univ, Dept Mech Engn, Seoul 120749, South Korea
来源
PLASMA SCIENCE & TECHNOLOGY | 2015年 / 17卷 / 05期
基金
新加坡国家研究基金会;
关键词
steam plasma igniter; aluminum powder ignition and combustion; optical emission spectroscopy; energetic metal fuels;
D O I
10.1088/1009-0630/17/5/06
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
High-temperature ignition is essential for the ignition and combustion of energetic metal fuels, including aluminum and magnesium particles which are protected by their high-melting-temperature oxides. A plasma torch characterized by an ultrahigh-temperature plasma plume fulfills such high-temperature ignition conditions. A new steam plasma igniter is designed and successfully validated by aluminum power ignition and combustion tests. The steam plasma rapidly stabilizes in both plasma and steam jet modes. Parametric investigation of the steam plasma jet is conducted in terms of arc strength. A high-speed camera and an oscilloscope method visualize the discharge characteristics, and optical emission spectroscopy measures the thermochemical properties of the plasma jet. The diatomic molecule OH fitting method, the Boltzmann plot method, and short exposure capturing with an intensified charge coupled device record the axial distributions of the rotational gas temperature, excitation temperature, and OH radical distribution, respectively. The excitation temperature at the nozzle tip is near 5500 K, and the gas temperature is 5400 K.
引用
收藏
页码:392 / 401
页数:10
相关论文
共 50 条
  • [21] Production of hydrogen-containing gas using the process of steam-plasma gasification of used tires
    A. S. Lerner
    A. N. Bratsev
    V. E. Popov
    V. A. Kuznetsov
    A. A. Ufimtsev
    S. V. Shengel’
    D. I. Subbotin
    [J]. Glass Physics and Chemistry, 2012, 38 : 511 - 516
  • [22] Equilibrium analysis of hydrogen production using the steam-plasma gasification process of the used car tires
    Kuznetsov, V. A.
    Kumkova, I. I.
    Lerner, A. S.
    Popov, V. E.
    [J]. 12TH HIGH-TECH PLASMA PROCESSES CONFERENCE (HTPP-12), 2012, 406
  • [23] Study on ignition characteristics of kerosene pre-combustion plasma jet igniter
    Zhang, Lei
    Yu, Jinlu
    Cheng, Weida
    Jia, Wenyu
    Wang, Xiaomin
    Zhang, Dengcheng
    [J]. PHYSICS OF FLUIDS, 2024, 36 (06)
  • [24] Production of hydrogen-containing gas using the process of steam-plasma gasification of used tires
    Lerner, A. S.
    Bratsev, A. N.
    Popov, V. E.
    Kuznetsov, V. A.
    Ufimtsev, A. A.
    Shengel', S. V.
    Subbotin, D. I.
    [J]. GLASS PHYSICS AND CHEMISTRY, 2012, 38 (06) : 511 - 516
  • [25] Activation of combustion synthesis of aluminum nitride powder
    Rosenband, V
    Gany, A
    [J]. JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2004, 147 (02) : 197 - 203
  • [26] Studies on aluminum powder combustion in detonation environment
    Nie, Jian-Xin
    Kan, Run-Zhe
    Jiao, Qing-Jie
    Wang, Qiu-Shi
    Guo, Xue-Yong
    Yan, Shi
    [J]. CHINESE PHYSICS B, 2022, 31 (04)
  • [27] Studies on aluminum powder combustion in detonation environment
    聂建新
    阚润哲
    焦清介
    王秋实
    郭学永
    闫石
    [J]. Chinese Physics B, 2022, (04) : 422 - 431
  • [28] EFFECT OF PRESSURE ON ALUMINUM POWDER COMBUSTION PROCESS
    KALABUKH.GV
    YURMANOV, YA
    RYZHIK, AB
    LIMONOV, BS
    [J]. COMBUSTION EXPLOSION AND SHOCK WAVES, 1971, 7 (04) : 521 - 522
  • [29] Calcium fluoride promoting the combustion of aluminum powder
    Ji, Yanwu
    Sun, Yunlan
    Zhu, Baozhong
    Liu, Jianzhong
    Wu, Yuxin
    [J]. ENERGY, 2022, 250
  • [30] Study of aluminum nitride formation by superfine aluminum powder combustion in air
    Gromov, A
    Vereshchagin, V
    [J]. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (09) : 2879 - 2884