Friction of magnetene, a non-van der Waals 2D material

被引:30
|
作者
Serles, Peter [1 ]
Arif, Taib [1 ]
Puthirath, Anand B. [2 ]
Yadav, Shwetank [3 ]
Wang, Guorui [1 ]
Cui, Teng [1 ]
Balan, Aravind Puthirath [2 ,4 ,5 ]
Yadav, Thakur Prasad [2 ,6 ]
Thibeorchews, Prasankumar [2 ]
Chakingal, Nithya [2 ]
Costin, Gelu [7 ]
Singh, Chandra Veer [3 ]
Ajayan, Pulickel M. [2 ]
Filleter, Tobin [1 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[2] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[3] Univ Toronto, Dept Mat Sci & Engn, 184 Coll St, Toronto, ON M5S 3E4, Canada
[4] Univ Manchester, Natl Graphene Inst NGI, Manchester M13 9PL, Lancs, England
[5] Univ Manchester, Sch Chem Engn, Manchester M13 9PL, Lancs, England
[6] Banaras Hindu Univ, Inst Sci, Dept Phys, Varanasi 221005, Uttar Pradesh, India
[7] Rice Univ, Dept Earth Environm & Planetary Sci, Houston, TX 77005 USA
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
MECHANICAL-PROPERTIES; HEMATITE; CONSTANTS; OXIDATION; SURFACES; SPECTRA; FE3O4; IRON;
D O I
10.1126/sciadv.abk2041
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Two-dimensional (2D) materials are known to have low-friction interfaces by reducing the energy dissipated by sliding contacts. While this is often attributed to van der Waals (vdW) bonding of 2D materials, nanoscale and quantum confinement effects can also act to modify the atomic interactions of a 2D material, producing unique interfacial properties. Here, we demonstrate the low-friction behavior of magnetene, a non-vdW 2D material obtained via the exfoliation of magnetite, showing statistically similar friction to benchmark vdW 2D materials. We find that this low friction is due to 2D confinement effects of minimized potential energy surface corrugation, lowered valence states reducing surface adsorbates, and forbidden low-damping phonon modes, all of which contribute to producing a low-friction 2D material.
引用
下载
收藏
页数:9
相关论文
共 50 条
  • [41] Surface Stability and Exfoliability of Non-van der Waals Magnetic Chromium Tellurides
    Zhang, Shuqing
    Huo, Sitong
    Song, Xiaoyan
    Zhang, Xinping
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (47): : 10609 - 10616
  • [42] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [43] Mechanically cleaving non-van der Waals structures by disrupting interlayer interactions
    Geng, Fengxia
    NATURE SYNTHESIS, 2023, 2 (01): : 15 - 16
  • [44] Skyrmions in the Moire of van der Waals 2D Magnets
    Tong, Qingjun
    Liu, Fei
    Xiao, Jiang
    Yao, Wang
    NANO LETTERS, 2018, 18 (11) : 7194 - 7199
  • [45] Utilization of the van der Waals Gap of 2D Materials
    Que, Haifeng
    Jiang, Huaning
    Wang, Xingguo
    Zhai, Pengbo
    Meng, Lingjia
    Zhang, Peng
    Gong, Yongji
    ACTA PHYSICO-CHIMICA SINICA, 2021, 37 (11)
  • [46] Luminescence in 2D Materials and van der Waals Heterostructures
    Jie, Wenjing
    Yang, Zhibin
    Bai, Gongxun
    Hao, Jianhua
    ADVANCED OPTICAL MATERIALS, 2018, 6 (10):
  • [47] 2D Van der Waals Heterostructures for Chemical Sensing
    Hou, Hui-Lei
    Anichini, Cosimo
    Samori, Paolo
    Criado, Alejandro
    Prato, Maurizio
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (49)
  • [48] Emerging 2D Materials and Their Van Der Waals Heterostructures
    Di Bartolomeo, Antonio
    NANOMATERIALS, 2020, 10 (03)
  • [49] Disorder in van der Waals heterostructures of 2D materials
    Rhodes, Daniel
    Chae, Sang Hoon
    Ribeiro-Palau, Rebeca
    Hone, James
    NATURE MATERIALS, 2019, 18 (06) : 541 - 549
  • [50] Energy dissipation in van der Waals 2D devices
    Ong, Zhun-Yong
    Bae, Myung-Ho
    2D MATERIALS, 2019, 6 (03):