Room-temperature single photon emitters in cubic boron nitride nanocrystals

被引:0
|
作者
Lopez-Morales, Gabriel, I [1 ,2 ,3 ]
Almanakly, Aziza [1 ,4 ]
Satapathy, Sitakanta [1 ]
Proscia, Nicholas, V [1 ]
Jayakumar, Harishankar [1 ]
Khabashesku, Valery N. [5 ,6 ]
Ajayan, Pulickel M. [6 ]
Meriles, Carlos A. [1 ,7 ]
Menon, Vinod M. [1 ,7 ]
机构
[1] CUNY, Dept Phys, City Coll, New York, NY 10031 USA
[2] CUNY, Dept Chem, Lehman Coll, Bronx, NY 10468 USA
[3] CUNY, Grad Ctr, PhD Program Chem, New York, NY 10016 USA
[4] Cooper Union Adv Sci & Art, Dept Elect Engn, New York, NY 10003 USA
[5] Baker Hughes, Ctr Technol Innovat, Houston, TX 77040 USA
[6] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[7] CUNY, Grad Ctr, PhD Program Phys, New York, NY 10016 USA
来源
OPTICAL MATERIALS EXPRESS | 2020年 / 10卷 / 04期
基金
美国国家科学基金会;
关键词
POINT-DEFECTS; LUMINESCENCE;
D O I
10.1364/OME.386791
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Color centers in wide bandgap semiconductors are attracting broad attention for use as platforms for quantum technologies relying on room-temperature single-photon emission (SPE), and for nanoscale metrology applications building on the centers' response to electric and magnetic fields. Here, we demonstrate room-temperature SPE from defects in cubic boron nitride (cBN) nanocrystals, which we unambiguously assign to the cubic phase using spectrally resolved Raman imaging. These isolated spots show photoluminescence (PL) spectra with zero-phonon lines (ZPLs) within the visible region (496-700 nm) when subject to sub-bandgap laser excitation. Second-order autocorrelation of the emitted photons reveals antibunching with g(2)(0) similar to 0.2, and a decay constant of 2.75 ns that is further confirmed through fluorescence lifetime measurements. The results presented herein prove the existence of optically addressable isolated quantum emitters originating from defects in cBN, making this material an interesting platform for opto-electronic devices and quantum applications. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:843 / 849
页数:7
相关论文
共 50 条
  • [31] Recent advances in room temperature single-photon emitters
    Shahram MohammadNejad
    Pouya Nosratkhah
    Hossein Arab
    [J]. Quantum Information Processing, 22
  • [32] Optical Properties of Room Temperature Single Photon Emitters in GaN
    Kianinia, Mehran
    Minh Nguyen
    Zhu, Tongtong
    Bradac, Carlo
    Toth, Milos
    Oliver, Rachel
    Aharonovich, Igor
    [J]. 2019 COMPOUND SEMICONDUCTOR WEEK (CSW), 2019,
  • [33] Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride
    Sakib, Mashnoon Alam
    Triplett, Brandon
    Harris, William
    Hussain, Naveed
    Senichev, Alexander
    Momenzadeh, Melika
    Bocanegra, Joshua
    Vabishchevich, Polina
    Wu, Ruqian
    Boltasseva, Alexandra
    Shalaev, Vladimir M.
    Shcherbakov, Maxim R.
    [J]. NANO LETTERS, 2024,
  • [34] Substitutional impurities in monolayer hexagonal boron nitride as single-photon emitters
    Re Fiorentin, Michele
    Kiprono, Kiptiemoi Korir
    Risplendi, Francesca
    [J]. NANOMATERIALS AND NANOTECHNOLOGY, 2020, 10 (10):
  • [35] Cavity quantum electrodynamics design with single photon emitters in hexagonal boron nitride
    Wang, Yanan
    Lee, Jaesung
    Berezovsky, Jesse
    Feng, Philip X. -L.
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (24)
  • [36] Polarization and Localization of Single-Photon Emitters in Hexagonal Boron Nitride Wrinkles
    Yim, Donggyu
    Yu, Mihyang
    Noh, Gichang
    Lee, Jieun
    Seo, Hosung
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (32) : 36362 - 36369
  • [37] Vibrational signatures for the identification of single-photon emitters in hexagonal boron nitride
    Linderalv, Christopher
    Wieczorek, Witlef
    Erhart, Paul
    [J]. PHYSICAL REVIEW B, 2021, 103 (11)
  • [38] Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room Temperature in Hexagonal Boron Nitride
    Gan, Lin
    Zhang, Danyang
    Zhang, Ruiling
    Zhang, Qiyao
    Sun, Hao
    Li, Yongzhuo
    Ning, Cun-Zheng
    [J]. ACS NANO, 2022, 16 (09) : 14254 - 14261
  • [39] Room-temperature Rydberg single-photon source
    Mueller, M. M.
    Koelle, A.
    Loew, R.
    Pfau, T.
    Calarco, T.
    Montangero, S.
    [J]. PHYSICAL REVIEW A, 2013, 87 (05):
  • [40] Highly Directional Room-Temperature Single Photon Device
    Livneh, Nitzan
    Harats, Moshe G.
    Istrati, Daniel
    Eisenberg, Hagai S.
    Rapaport, Ronen
    [J]. NANO LETTERS, 2016, 16 (04) : 2527 - 2532