Towards Better Estimation of Statistical Significance When Comparing Evolutionary Algorithms

被引:0
|
作者
Buzdalov, Maxim [1 ]
机构
[1] ITMO Univ, St Petersburg, Russia
来源
PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION (GECCCO'19 COMPANION) | 2019年
基金
俄罗斯科学基金会;
关键词
Multiple comparisons; statistical significance; TESTS;
D O I
10.1145/3319619.3326899
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The use of well-established statistical testing procedures to compare the performance of evolutionary algorithms often yields pessimistic results. This requires increasing the number of independent samples, and thus the computation time, in order to get results with the necessary precision. We aim at improving this situation by developing statistical tests that are good in answering typical questions coming from benchmarking of evolutionary algorithms. Our first step, presented in this paper, is a procedure that determines whether the performance distributions of two given algorithms are identical for each of the benchmarks. Our experimental study shows that this procedure is able to spot very small differences in the performance of algorithms while requiring computational budgets which are by an order of magnitude smaller (e.g. 15x) compared to the existing approaches.
引用
收藏
页码:1782 / 1788
页数:7
相关论文
共 50 条
  • [21] Comparing Performance of Evolutionary Algorithms - A Travelling Salesman Perspective
    Donbosco, Immanuel Savio
    Chakraborty, Udit Kr.
    2021 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING, DATA SCIENCE & ENGINEERING (CONFLUENCE 2021), 2021, : 182 - 187
  • [22] Comparing evolutionary algorithms on binary constraint satisfaction problems
    Craenen, BGW
    Eiben, AE
    van Hemert, JI
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (05) : 424 - 444
  • [23] Evolutionary Algorithms for a Better Gaming Experience in Rehabilitation Robotics
    Andrade, Kleber O.
    Joaquim, Ricardo C.
    Caurin, Glauco A. P.
    Crocomo, Marcio K.
    COMPUTERS IN ENTERTAINMENT, 2018, 16 (02):
  • [24] Comparing Evolutionary Operators, Search Spaces, and Evolutionary Algorithms in the Construction of Facial Composites
    Mist, Joseph James
    Gibson, Stuart James
    Solomon, Christopher John
    INFORMATICA-JOURNAL OF COMPUTING AND INFORMATICS, 2015, 39 (02): : 135 - 145
  • [25] Comparing evolutionary programs and evolutionary pattern search algorithms: a drug docking application
    Hart, WE
    GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 1999, : 855 - 862
  • [26] THE BINNING ANALYSIS - TOWARDS A BETTER SIGNIFICANCE TEST
    GOSSET, E
    LOUIS, B
    ASTROPHYSICS AND SPACE SCIENCE, 1986, 120 (02) : 263 - 306
  • [27] Optimisation of density estimation models with evolutionary algorithms
    Kreutz, M
    Reimetz, AM
    Sendhoff, B
    Weihs, C
    von Seelen, W
    PARALLEL PROBLEM SOLVING FROM NATURE - PPSN V, 1998, 1498 : 998 - 1007
  • [28] Evolutionary Algorithms for Parameter Estimation of Metabolic Systems
    Lebedik, Anastasia Slustikova
    Zelinka, Ivan
    Advances in Intelligent Systems and Computing, 2013, 210 : 201 - 209
  • [29] Application of Evolutionary Algorithms in Guaranteed Parameter Estimation
    Goerke, Thilo
    Engell, Sebastian
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 5100 - 5105
  • [30] A Statistical Approach to Dealing with Noisy Fitness in Evolutionary Algorithms
    Merelo, J. J.
    Chelly, Zeineb
    Mora, Antonio
    Fernandez-Ares, Antonio
    Esparcia-Alcazar, Anna I.
    Cotta, Carlos
    de las Cuevas, P.
    Rico, Nuria
    COMPUTATIONAL INTELLIGENCE, IJCCI 2014, 2016, 620 : 79 - 95