Cluster learning-assisted directed evolution

被引:22
|
作者
Qiu, Yuchi [1 ]
Hu, Jian [2 ,3 ]
Wei, Guo-Wei [1 ,3 ,4 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
[2] Michigan State Univ, Dept Chem, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Biochem & Mol Biol, E Lansing, MI 48824 USA
[4] Michigan State Univ, Dept Elect & Comp Engn, E Lansing, MI 48824 USA
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 12期
关键词
PROTEIN; PREDICTION; MUTATION;
D O I
10.1038/s43588-021-00168-y
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Directed evolution, a strategy for protein engineering, optimizes protein properties (that is, fitness) by expensive and time-consuming screening or selection of a large mutational sequence space. Machine learning-assisted directed evolution (MLDE), which screens sequence properties in silico, can accelerate the optimization and reduce the experimental burden. This work introduces an MLDE framework, cluster learning-assisted directed evolution (CLADE), which combines hierarchical unsupervised clustering sampling and supervised learning to guide protein engineering. The clustering sampling selectively picks and screens variants in targeted subspaces, which guides the subsequent generation of diverse training sets. In the last stage, accurate predictions via supervised learning models improve the final outcomes. By sequentially screening 480 sequences out of 160,000 in a four-site combinatorial library with five equal experimental batches, CLADE achieves global maximal fitness hit rates of up to 91.0% and 34.0% for the GB1 and PhoQ datasets, respectively, improved from the values of 18.6% and 7.2% obtained by random sampling-based MLDE.
引用
收藏
页码:809 / 818
页数:10
相关论文
共 50 条
  • [41] Machine learning-assisted multi-scale modeling
    Weinan, E.
    Lei, Huan
    Xie, Pinchen
    Zhang, Linfeng
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (07)
  • [42] Machine learning-assisted discovery of flow reactor designs
    Tom Savage
    Nausheen Basha
    Jonathan McDonough
    James Krassowski
    Omar Matar
    Ehecatl Antonio del Rio Chanona
    [J]. Nature Chemical Engineering, 2024, 1 (8): : 522 - 531
  • [43] Learning-assisted Beam Search for Indoor mmWave Networks
    Chen, Yu-Jia
    Cheng, Wei-Yuan
    Wang, Li-Chun
    [J]. 2018 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE WORKSHOPS (WCNCW), 2018, : 320 - 325
  • [44] Interpretable machine learning-assisted screening of perovskite oxides
    Zhao, Jie
    Wang, Xiaoyan
    Li, Haobo
    Xu, Xiaoyong
    [J]. RSC ADVANCES, 2024, 14 (06) : 3909 - 3922
  • [45] Machine Learning-Assisted Modeling in Antenna Array Design
    Wu, Qi
    Chen, Weiqi
    Li, Yuefeng
    Wang, Haiming
    Yin, Jiexi
    Yin, Weishuang
    [J]. 2024 IEEE INTERNATIONAL WORKSHOP ON ANTENNA TECHNOLOGY, IWAT, 2024, : 92 - 93
  • [46] Machine Learning-Assisted PAPR Reduction in Massive MIMO
    Kalinov, Aleksei
    Bychkov, Roman
    Ivanov, Andrey
    Osinsky, Alexander
    Yarotsky, Dmitry
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 537 - 541
  • [47] A Dynamic Opposite Learning-Assisted Grey Wolf Optimizer
    Wang, Yang
    Jin, Chengyu
    Li, Qiang
    Hu, Tianyu
    Xu, Yunlang
    Chen, Chao
    Zhang, Yuqian
    Yang, Zhile
    [J]. SYMMETRY-BASEL, 2022, 14 (09):
  • [48] Deep learning-assisted segmentation of bubble image shadowgraph
    Binqi Chen
    Michael Chukwuemeka Ekwonu
    Shujun Zhang
    [J]. Journal of Visualization, 2022, 25 : 1125 - 1136
  • [49] Interactive Transfer Learning-Assisted Fuzzy Neural Network
    Han, Honggui
    Liu, Hongxu
    Liu, Zheng
    Qiao, Junfei
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (06) : 1900 - 1913
  • [50] Machine Learning-Assisted Decision Making in Orthopaedic Oncology
    Rizk, Paul A.
    Gonzalez, Marcos R.
    Galoaa, Bishoy M.
    Girgis, Andrew G.
    Van Der Linden, Lotte
    Chang, Connie Y.
    Lozano-Calderon, Santiago A.
    [J]. JBJS REVIEWS, 2024, 12 (07)