Polynomial automorphisms of Cn preserving the Markoff-Hurwitz polynomial

被引:0
|
作者
Hu, Hengnan [1 ]
Tan, Ser Peow [1 ]
Zhang, Ying [2 ]
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119076, Singapore
[2] Soochow Univ, Sch Math Sci, Suzhou 215006, Peoples R China
关键词
Markoff-Hurwitz polynomial; Cayley graph; Polynomial automorphisms; Identities; ONE-HOLED TORUS; MCSHANES IDENTITY; CHARACTER VARIETY; SIMPLE GEODESICS; MODULI SPACES; TRIPLES; SL(2;
D O I
10.1007/s10711-017-0235-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the action of the group of polynomial automorphisms of C-n (n >= 3) which preserve the Markoff-Hurwitz polynomial H (x) := x(2) (1) + x(2)(2) + . . . + x(n)(2) - x(1)x(2) . . . x(n). Our main results include the determination of the group, the description of a non-empty open subset of C-n on which the group acts properly discontinuously (domain of discontinuity), and identities for the orbit of points in the domain of discontinuity.
引用
收藏
页码:207 / 243
页数:37
相关论文
共 50 条
  • [31] The Markoff equation over polynomial rings
    Conceicao, Ricardo
    Kelly, Rachael
    VanFossen, Samuel
    MONATSHEFTE FUR MATHEMATIK, 2021, 196 (02): : 253 - 267
  • [32] The Markoff equation over polynomial rings
    Ricardo Conceição
    Rachael Kelly
    Samuel VanFossen
    Monatshefte für Mathematik, 2021, 196 : 253 - 267
  • [33] Computing a Hurwitz factorization of a polynomial
    Gemignani, L
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 126 (1-2) : 369 - 380
  • [34] Hurwitz matrix for polynomial matrices
    Kraus, FJ
    Mansour, M
    Sebek, M
    STABILITY THEORY: HURWITZ CENTENARY CONFERENCE, CENTRO STEFANO FRANSCINI, ASCONA, 1995, 1996, 121 : 67 - 74
  • [35] AUTOMORPHISMS OF SKEW POLYNOMIAL RINGS
    BLEAZBY, MT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (05): : A475 - A475
  • [36] Equivariant polynomial automorphisms of Θ-representations
    Kurth, A
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (02): : 378 - 400
  • [37] ON AUTOMORPHISMS OF POLYNOMIAL-RINGS
    SHAMSUDDIN, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1982, 14 (SEP) : 407 - 409
  • [38] ON POLYNOMIAL AUTOMORPHISMS OF NAGATA TYPE
    Huarcaya, Jorge A.C.
    Palacios, Joe
    arXiv,
  • [39] Polynomial automorphisms and Grobner reductions
    Shpilrain, V
    Yu, JT
    JOURNAL OF ALGEBRA, 1997, 197 (02) : 546 - 558
  • [40] IDENTITY SETS FOR POLYNOMIAL AUTOMORPHISMS
    JELONEK, Z
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1991, 76 (03) : 333 - 337