Robust Variable Selection and Estimation in Threshold Regression Model

被引:2
|
作者
Li, Bo-wen [1 ]
Zhang, Yun-qi [2 ]
Tang, Nian-sheng [2 ]
机构
[1] Univ Sci & Technol China, Sch Management, Hefei 230026, Peoples R China
[2] Yunnan Univ, Key Lab Stat Modeling & Data Anal Yunnan Prov, Kunming 650091, Yunnan, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Threshold regression; Robust estimation; Lasso; CHANGE-POINT; LASSO; SHRINKAGE;
D O I
10.1007/s10255-020-0939-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We combine the robust criterion with the lasso penalty together for the high-dimensional threshold model. It estimates regression coeffcients as well as the threshold parameter robustly that can be resistant to outliers or heavy-tailed noises and perform variable selection simultaneously. We illustrate our approach with the absolute loss, the Huber's loss, and the Tukey's loss, it can also be extended to any other robust losses. Simulation studies are conducted to demonstrate the usefulness of our robust approach. Finally, we use our estimators to investigate the presence of a shift in the effect of debt on future GDP growth.
引用
收藏
页码:332 / 346
页数:15
相关论文
共 50 条
  • [1] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen Li
    Yun-qi Zhang
    Nian-sheng Tang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2020, 36 : 332 - 346
  • [2] Robust Variable Selection and Estimation in Threshold Regression Model
    Bo-wen LI
    Yun-qi ZHANG
    Nian-sheng TANG
    [J]. Acta Mathematicae Applicatae Sinica, 2020, 36 (02) : 332 - 346
  • [3] Robust estimation and variable selection in heteroscedastic linear regression
    Gijbels, I.
    Vrinssen, I.
    [J]. STATISTICS, 2019, 53 (03) : 489 - 532
  • [4] Robust variable selection in the logistic regression model
    Jiang, Yunlu
    Zhang, Jiantao
    Huang, Yingqiang
    Zou, Hang
    Huang, Meilan
    Chen, Fanhong
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2021, 50 (05): : 1572 - 1582
  • [5] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Guney, Yesim
    Tuac, Yetkin
    Ozdemir, Senay
    Arslan, Olcay
    [J]. COMPUTATIONAL STATISTICS, 2021, 36 (02) : 805 - 827
  • [6] Robust estimation and variable selection in heteroscedastic regression model using least favorable distribution
    Yeşim Güney
    Yetkin Tuaç
    Şenay Özdemir
    Olcay Arslan
    [J]. Computational Statistics, 2021, 36 : 805 - 827
  • [7] Robust Variable Selection and Estimation Based on Kernel Modal Regression
    Guo, Changying
    Song, Biqin
    Wang, Yingjie
    Chen, Hong
    Xiong, Huijuan
    [J]. ENTROPY, 2019, 21 (04)
  • [8] Robust estimation and variable selection for function-on-scalar regression
    Cai, Xiong
    Xue, Liugen
    Ca, Jiguo
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 162 - 179
  • [9] Robust estimation and variable selection for semiparametric partially linear varying coefficient model based on modal regression
    Zhang, Riquan
    Zhao, Weihua
    Liu, Jicai
    [J]. JOURNAL OF NONPARAMETRIC STATISTICS, 2013, 25 (02) : 523 - 544
  • [10] Robust estimation and selection for single-index regression model
    Bindele, Huybrechts F.
    Abebe, Asheber
    Zeng, Peng
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (08) : 1376 - 1393