Fatigue life evaluation of ERW joint in the pipe using Monte-Carlo simulation

被引:0
|
作者
Kim, CM [1 ]
Kim, JK
Kim, CS
机构
[1] POSCO, Joining Res Grp, Pohang, Gyeong, South Korea
[2] Hanyang Univ, Sch Mech Engn, Seoul 133791, South Korea
来源
关键词
high frequency electric resistance weld; fatigue life; Monte-Carlo simulation; surface crack; failure probability;
D O I
10.4028/www.scientific.net/KEM.297-300.3
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The optimum welding condition for the input power was experimentally determined using the ERW simulator. The optimum condition derived from the nondestructive defect inspection and impact energy was the heat input power of 250kW with normalizing treatment at 900 degrees C. In order to evaluate the fatigue life of ERW pipes, fatigue crack growth test for base metal and weld joint with the optimum condition were performed. As stress intensity factor range (Delta K-S) increased, the fatigue crack propagation rate (da/dN) of the weld joint became slower than that of the base metal. The fatigue life of ERW pipe was statistically estimated using Monte-Carlo simulation with the standard deviation of material constants (C and m) of the Paris law in the specimen. The fatigue life at failure probability P-F = 50% is 2.3 x 10(5) cycle. Since the fatigue test of pipe in field has a lot of difficulties due to cost, equipment and time, the life derived from the simulation was identified using the common durability simulation software.
引用
收藏
页码:3 / 9
页数:7
相关论文
共 50 条
  • [31] ASSESSMENT OF THE SCATTER FRACTION EVALUATION METHODOLOGY USING MONTE-CARLO SIMULATION TECHNIQUES
    ACCHIAPPATI, D
    CERULLO, N
    GUZZARDI, R
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE, 1989, 15 (11): : 683 - 686
  • [32] Fatigue life reliability prediction of a stub axle using Monte Carlo simulation
    Y. M. Asri
    E. A. Azrulhisham
    A. W. Dzuraidah
    A. Shahrir
    A. Shahrum
    Z. Azami
    International Journal of Automotive Technology, 2011, 12 : 713 - 719
  • [33] Fatigue life reliability prediction of a stub axle using Monte Carlo simulation
    Asri, Y. M.
    Azrulhisham, E. A.
    Dzuraidah, A. W.
    Shahrir, A.
    Shahrum, A.
    Azami, Z.
    INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2011, 12 (05) : 713 - 719
  • [34] Using phase space for SPECT Monte-Carlo simulation
    Sarrut, D.
    Baudier, T.
    Labour, J.
    Badel, J.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2019, 46 (SUPPL 1) : S770 - S770
  • [35] Monopole scaling dimension using Monte-Carlo simulation
    Karthik, Nikhil
    PHYSICAL REVIEW D, 2018, 98 (07)
  • [36] OPTIMIZATION OF RECONSTRUCTION ALGORITHMS USING MONTE-CARLO SIMULATION
    HANSON, KM
    INSTITUTE OF PHYSICS CONFERENCE SERIES, 1989, (97): : 721 - 734
  • [37] Improving Cloud Simulation Using the Monte-Carlo Method
    Bertot, Luke
    Genaud, Stephane
    Gossa, Julien
    EURO-PAR 2018: PARALLEL PROCESSING, 2018, 11014 : 404 - 416
  • [38] SIMULATION OF CHEMICAL SYSTEMS USING MONTE-CARLO METHOD
    HANUSSE, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE C, 1973, 277 (02): : 93 - 96
  • [39] OPTIMIZATION OF RECONSTRUCTION ALGORITHMS USING MONTE-CARLO SIMULATION
    HANSON, KM
    ADVANCED NEUTRON SOURCES 1988, 1989, 97 : 721 - 734
  • [40] Fatigue life prediction of adhesive joint in heat sink using Monte Carlo method
    Pashah, S.
    Arif, Abul Fazal M.
    INTERNATIONAL JOURNAL OF ADHESION AND ADHESIVES, 2014, 50 : 164 - 175