Design of Interval Type-2 Fuzzy Set-based Fuzzy Neural Networks Using Successive Tuning Method

被引:0
|
作者
Park, Keon-Jun [1 ]
Oh, Sung-Kwun [1 ]
Kim, Yong-Kab [2 ]
机构
[1] Univ Suwon, Dept Elect Engn, San 2-2 Wau Ri, Hwaseong Si 445743, Gyeonggi Do, South Korea
[2] Wonkwang Univ, Dept Elect & Elect Engn, Choksan 570749, South Korea
来源
RELIABLE AND AUTONOMOUS COMPUTATIONAL SCIENCE | 2011年
基金
新加坡国家研究基金会;
关键词
LOGIC SYSTEMS;
D O I
10.1007/978-3-0348-0031-0_19
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we introduce the design methodology of interval type-2 fuzzy set-based fuzzy neural networks (IT2FSFNN). IT2FSFNN is the network of combination between the fuzzy neural network (FNN) and interval type-2 fuzzy set with uncertainty. The premise part of the network is composed of the fuzzy division of respective input space and the consequence part of the network is represented by polynomial functions with interval set. To determine the structure and estimate the values of the parameters of IT2FSFNN we consider the successive tuning method with generation-based evolution by means of genetic algorithms. The proposed network is evaluated with the use of numerical experimentation.
引用
收藏
页码:367 / +
页数:2
相关论文
共 50 条
  • [31] A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks
    Castro, Juan R.
    Castillo, Oscar
    Melin, Patricia
    Rodriguez-Diaz, Antonio
    INFORMATION SCIENCES, 2009, 179 (13) : 2175 - 2193
  • [32] An Incremental Interval Type-2 Neural Fuzzy Classifier
    Pratama, Mahardhika
    Lu, Jie
    Zhang, Guangquan
    2015 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2015), 2015,
  • [33] Credit Rating Using Type-2 Fuzzy Neural Networks
    Abiyev, Rahib H.
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2014, 2014
  • [34] Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods
    Jiajun Wang
    Tufan Kumbasar
    IEEE/CAA Journal of Automatica Sinica, 2019, 6 (01) : 247 - 257
  • [35] Interval type-2 fuzzy neural networks for multi-label classification
    Tian, Dayong
    Li, Feifei
    Wei, Yiwen
    KNOWLEDGE-BASED SYSTEMS, 2025, 312
  • [36] On using type-1 fuzzy set mathematics to derive interval type-2 fuzzy logic systems
    Mendel, JM
    John, RI
    Liu, FL
    NAFIPS 2005 - 2005 ANNUAL MEETING OF THE NORTH AMERICAN FUZZY INFORMATION PROCESSING SOCIETY, 2005, : 528 - 533
  • [37] Parameter Optimization of Interval Type-2 Fuzzy Neural Networks Based on PSO and BBBC Methods
    Wang, Jiajun
    Kumbasar, Tufan
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 247 - 257
  • [38] A new design methodology of fuzzy set-based polynomial neural networks with symbolic gene type genetic algorithms
    Roh, Seok-Beom
    Oh, Sung-Kwun
    Ahn, Tae-Chon
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 768 - 773
  • [39] Artificial immune system based on interval type-2 fuzzy set paradigm
    Viscontia, A.
    Tahayori, H.
    APPLIED SOFT COMPUTING, 2011, 11 (06) : 4055 - 4063
  • [40] Masquerade intrusion detection algorithm based on interval type-2 fuzzy set
    EDA Laboratory, Physics Department, Xiamen University, Xiamen 361005, China
    不详
    Tien Tzu Hsueh Pao, 2008, 4 (777-780):