Organosulfur Compounds Enable Uniform Lithium Plating and Long-Term Battery Cycling Stability

被引:35
|
作者
Boateng, Bismark [3 ,4 ,5 ]
Han, Yupei [5 ]
Zhen, Cheng [5 ]
Zeng, Guangfeng [5 ]
Chen, Ning [5 ]
Chen, Dongjiang [5 ]
Feng, Chao [5 ]
Han, Jiecai [3 ,4 ]
Xiong, Jie [1 ]
Duan, Xiangfeng [2 ]
He, Weidong [3 ,4 ,5 ]
机构
[1] Univ Elect Sci & Technol China, State Key Lab Elect Thin Film & Integrated Device, Chengdu 610054, Peoples R China
[2] Univ Calif Los Angeles, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[4] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150080, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Phys, Chengdu 611731, Peoples R China
关键词
organosulfur compounds; Li-metal anode; solid-electrolyte interphase; Li ion transference number; low cell polarization; SOLID-ELECTROLYTE INTERPHASE; METAL; DEPOSITION; SURFACE; ELECTRODEPOSITION; COMPONENTS; LIQUID; LAYER; FILMS;
D O I
10.1021/acs.nanolett.0c00074
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal represents an ultimate anode material of lithium batteries for its high energy density. However, its large negative redox potential and reactive nature can trigger electrolyte decomposition and dendrite formation, causing unstable cycling and short circuit of batteries. Herein, we engineer a resilient solid electrolyte interphase on SE , the Li anode by compositing the battery separator with organosulfur compounds and inorganic salts from garlic. These compounds take part in battery reactions to suppress dendrite growth through reversible electrochemistry and attenuate ionic concentration gradient. When the Li anode and the separator are paired with the LiFePO4 cathode, one obtains a battery delivering long-term cycling stability of 3000 cycles, a rate capacity of 100 mAh g(-1) at 10 C (2.5 mA cm(-2)), a Coulombic efficiency of 99.9%, and a low battery polarization. Additionally, with high-loading 20 mg cm(-2) LiFePO4 cathodes, an areal capacity of 3.4 mAh cm(-2) is achieved at 0.3 C (1 mA cm(-2)).
引用
收藏
页码:2594 / 2601
页数:8
相关论文
共 50 条
  • [21] A lithium-tellurium rechargeable battery with exceptional cycling stability
    Koketsu, Toshinari
    Paul, Benjamin
    Wu, Chao
    Kraehnert, Ralph
    Huang, Yunhui
    Strasser, Peter
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2016, 46 (06) : 627 - 633
  • [22] Electrospun Sulfurized Polyacrylonitrile Nanofibers for Long-Term Cycling Stability and High-Rate Lithium-Sulfur Batteries
    Wu, Qiang
    Zhang, Wei
    Li, Siwu
    Zhong, Wei
    Zhu, Haolin
    Zeng, Ziqi
    Yu, Chuang
    Cheng, Shijie
    Xie, Jia
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (04): : 5212 - 5218
  • [23] Enhancing long-term cycling stability of lithium-ion batteries with prelithiated MXene@SiO2 anodes
    Chen, Xingguang
    Chen, Zifang
    Xiao, Hao
    Wang, Haodong
    Chen, Wenlan
    Chen, Chi
    Sun, Dan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (09):
  • [24] A novel nanoporous Fe-doped lithium manganese phosphate material with superior long-term cycling stability for lithium-ion batteries
    Zuo, Pengjian
    Wang, Liguang
    Zhang, Wei
    Yin, Geping
    Ma, Yulin
    Du, Chunyu
    Cheng, Xinqun
    Gao, Yunzhi
    NANOSCALE, 2015, 7 (27) : 11509 - 11514
  • [25] A novel aluminium-air secondary battery with long-term stability
    Mori, Ryohei
    RSC ADVANCES, 2014, 4 (04): : 1982 - 1987
  • [26] Revolutionizing anode-free batteries with holey graphene interlayers: Achieving uniform lithium deposition and long-term stability
    Jang, Eunbin
    Park, Seungjin
    Lee, Jemin
    Kim, Patrick Joohyun
    Yoo, Jeeyoung
    JOURNAL OF ENERGY STORAGE, 2025, 115
  • [27] Oleic-acid-assisted carbon coating on Sn nanoparticles for Li ion battery electrodes with long-term cycling stability
    Lee, Duk-Hee
    Shim, Hyun-Woo
    Kim, Jae-Chan
    Kim, Dong-Wan
    RSC ADVANCES, 2014, 4 (84): : 44563 - 44567
  • [28] Lithium Compound Deposition on Mesocarbon Microbead Anode of Lithium Ion Batteries after Long-Term Cycling
    Yang, Lijie
    Cheng, Xinqun
    Gao, Yunzhi
    Zuo, Pengjian
    Ma, Yulin
    Du, Chunyu
    Shen, Bin
    Cui, Yingzhi
    Guan, Ting
    Yin, Geping
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (15) : 12962 - 12970
  • [29] Degradation Analysis of Commercial Lithium-Ion Battery in Long-Term Storage
    Lu, Taolin
    Luo, Ying
    Zhang, Yixiao
    Luo, Weilin
    Yan, Liqin
    Xie, Jingying
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (04) : A775 - A784
  • [30] Rational Design of Cu3Si Interphase for 3D Micron-Sized SiOC-based Anode to Enable Long-Term Cycling of Lithium-Ion Battery
    Wang, Juan
    Jin, Siwen
    He, Zhengqiu
    Kong, Debin
    Hu, Han
    Feng, Xiang
    Chen, De
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (03)