Weakly-supervised Semantic Segmentation in Cityscape via Hyperspectral Image

被引:6
|
作者
Huang, Yuxing [1 ]
Shen, Qiu [1 ]
Fu, Ying [2 ]
You, Shaodi [3 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing, Peoples R China
[2] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing, Peoples R China
[3] Univ Amsterdam, Comp Vis Res Grp, Amsterdam, Netherlands
关键词
VIDEO;
D O I
10.1109/ICCVW54120.2021.00131
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Hyperspectral images (HSIs) contain the response of each pixel in different spectral bands, which can be used to effectively distinguish various objects in complex scenes. While HSI cameras have become low cost, algorithms based on it have not been well exploited. In this paper, we focus on a novel topic, weakly-supervised semantic segmentation in cityscape via HSIs. It is based on the idea that high-resolution HSIs in city scenes contain rich spectral information, which can be easily associated to semantics without manual labeling. Therefore, it enables low cost, highly reliable semantic segmentation in complex scenes. Specifically, in this paper, we theoretically analyze the HSIs and introduce a weakly-supervised HSI semantic segmentation framework, which utilizes spectral information to improve the coarse labels to a finer degree. The experimental results show that our method can obtain highly competitive labels and even have higher edge fineness than artificial fine labels in some classes. At the same time, the results also show that the refined labels can effectively improve the performance of existing semantic segmentation algorithms. The combination of HSIs and semantic segmentation proves that HSIs have great potential in high-level visual tasks for automatic driving.
引用
收藏
页码:1117 / 1126
页数:10
相关论文
共 50 条
  • [21] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Wang, Xiang
    Liu, Sifei
    Ma, Huimin
    Yang, Ming-Hsuan
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2020, 128 (06) : 1736 - 1749
  • [22] Boosting Weakly-Supervised Image Segmentation via Representation, Transform, and Compensator
    Wang, Chunyan
    Zhang, Dong
    Yan, Rui
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 11013 - 11025
  • [23] Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning
    Xiang Wang
    Sifei Liu
    Huimin Ma
    Ming-Hsuan Yang
    International Journal of Computer Vision, 2020, 128 : 1736 - 1749
  • [24] Learning Visual Words for Weakly-Supervised Semantic Segmentation
    Ru, Lixiang
    Du, Bo
    Wu, Chen
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 982 - 988
  • [25] Weakly-Supervised Semantic Segmentation by Learning Label Uncertainty
    Neven, Robby
    Neven, Davy
    De Brabandere, Bert
    Proesmans, Marc
    Goedeme, Toon
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1678 - 1686
  • [26] Modeling the Background for Incremental and Weakly-Supervised Semantic Segmentation
    Cermelli, Fabio
    Mancini, Massimiliano
    Bulo, Samuel Rota
    Ricci, Elisa
    Caputo, Barbara
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 10099 - 10113
  • [27] Weakly-Supervised Semantic Segmentation Based on Improved CAM
    Yan, Xingya
    Gao, Ying
    Wang, Gaihua
    Lecture Notes on Data Engineering and Communications Technologies, 2022, 89 : 584 - 594
  • [28] Weakly-supervised semantic segmentation via online pseudo-mask correcting
    Feng, Jiapei
    Wang, Xinggang
    Li, Te
    Ji, Shanshan
    Liu, Wenyu
    PATTERN RECOGNITION LETTERS, 2023, 165 : 33 - 38
  • [29] Weakly-Supervised Semantic Segmentation with Mean Teacher Learning
    Tan, Li
    Luo, WenFeng
    Yang, Meng
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 324 - 335
  • [30] WeakCLIP: Adapting CLIP for Weakly-Supervised Semantic Segmentation
    Zhu, Lianghui
    Wang, Xinggang
    Feng, Jiapei
    Cheng, Tianheng
    Li, Yingyue
    Jiang, Bo
    Zhang, Dingwen
    Han, Junwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (03) : 1085 - 1105