Optimal quadrature problem on Hardy-Sobolev classes

被引:3
|
作者
Fang, GS [1 ]
Li, XH [1 ]
机构
[1] Beijing Normal Univ, Sch Math Sci, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Hardy-Sobolev classes; analytic function; optimal quadrature formula;
D O I
10.1016/j.jco.2005.01.002
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let denote those 2 pi-periodic, real-valued functions f on R, which are analytic in the strip S-beta, := (z is an element of C : vertical bar Imz vertical bar < beta}, beta > 0 and satisfy the restriction vertical bar f((r))(z)vertical bar <= 1, z is an element of S-beta. Denote by [x] the integral part of x. We prove that the rectangular formula N-I 27ri Q*N(f) N j=0 is optimal for the class of functions H among all quadrature formulae of the form QN*(f) = 2 pi/N Sigma(j=0)(N-1) f(2 pi j/N) where the nodes 0,<= t(1) < ... < t(n) < 27r and the coefficients aij E R are arbitrary, i = 1,... 1 17, j = 0, 1, vi - 1, and (vI, vn) is a system of positive integers satisfying the condition Sigma(i=1)(n)2[(v(i) + 1)/2 <= 2N. In particular, the rectangular formula is optimal for the class of functions H-infinity,beta(r) among all quadrature formulae of the form: QN(f) = Sigma(i=1)(N) a(i)f(t(i)), where O <= t(1) < ... < t(N) < 2 pi and a(i) is an element of R, i = 1, .... N. Moreover, we exactly determine the error estimate of the optimal quadrature formulae on the class (H) over tilde infinity,beta. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:722 / 739
页数:18
相关论文
共 50 条
  • [41] Hardy-Sobolev Inequalities with Dunkl Weights
    Anh Dao Nguyen
    Duy Nguyen Tuan
    Nguyen Lam Hoang
    Van Phong Nguyen
    ACTA MATHEMATICA VIETNAMICA, 2023, 48 (01) : 133 - 149
  • [42] Fredholmness of multipliers on Hardy-Sobolev spaces
    Cao, Guangfu
    He, Li
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 1 - 10
  • [43] Missing terms in Hardy-Sobolev inequalities
    Detalla, A
    Horiuchi, T
    Ando, H
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2004, 80 (08) : 160 - 165
  • [44] On the multi-singular elliptic problem involving Hardy-Sobolev inequalities
    Kang, Dongsheng
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2008, 19 (07) : 823 - 846
  • [45] Geometric Hardy and Hardy-Sobolev inequalities on Heisenberg groups
    Ruzhansky, Michael
    Sabitbek, Bolys
    Suragan, Durvudkhan
    BULLETIN OF MATHEMATICAL SCIENCES, 2020, 10 (03)
  • [46] Abstract Hardy-Sobolev spaces and interpolation
    Badr, Nadine
    Bernicot, Frederic
    JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (05) : 1169 - 1208
  • [47] On the best constant of Hardy-Sobolev inequalities
    Adimurthi
    Filippas, Stathis
    Tertikas, Achilles
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (08) : 2826 - 2833
  • [48] TANGENTIAL CHARACTERIZATIONS OF HARDY-SOBOLEV SPACES
    COHN, WS
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1991, 40 (04) : 1221 - 1249
  • [49] Pointwise characterizations of Hardy-Sobolev functions
    Koskela, Pekka
    Saksman, Eero
    MATHEMATICAL RESEARCH LETTERS, 2008, 15 (04) : 727 - 744
  • [50] On the Fucik spectrum of Hardy-Sobolev operator
    Sreenadh, K
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (07) : 1167 - 1185